@ DEGREE PROJECT IN INFORMATION AND COMMUNICATION
TECHNOLOGY,

Sy,
EZKTHY

SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2020

VETENSKAP
28 OCH KONST 2%

eos®

Evaluation of Network-Layer
Security Technologies for Cloud
Platforms

BRUNO MARCEL DUARTE COSCIA

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Evaluation of Network-Layer
Security Technologies for
Cloud Platforms

BRUNO MARCEL DUARTE COSCIA

Master in Security and Cloud Computing SECCLO
Date: 22.11.2020

Industry Supervisor: Bilal Ahmad, MSc.

KTH Supervisor: Hongyu Jin, PhD.

KTH Examiner: Professor Panagiotis Papadimitratos
Aalto University Examiner: Professor Tuomas Aura
School of Electrical Engineering and Computer Science
Host company: Oy LM Ericsson Ab (LMF), Finland
Swedish title: Utvardering av sékerhetsteknologier for
natverksskiktet i molnplattformar

Abstract

With the emergence of cloud-native applications, the need to secure networks
and services creates new requirements concerning automation, manageability,
and scalability across data centers. Several solutions have been developed to
overcome the limitations of the conventional and well established [Psec suite
as a secure tunneling solution. One strategy to meet these new requirements
has been the design of software-based overlay networks. In this thesis, we as-
sess the deployment of a traditional IPsec VPN solution against a new secure
overlay mesh network called Nebula. We conduct a case study by provisioning
an experimental system to evaluate Nebula in four key areas: reliability, secu-
rity, manageability, and performance. We discuss the strengths of Nebula and
its limitations for securing inter-service communication in distributed cloud
applications. In terms of reliability, the thesis shows that Nebula falls short to
meet its own goals of achieving host-to-host connectivity when attempting to
traverse specific firewalls and NATs. With respect to security, Nebula provides
certificate-based authentication and uses current and fast cryptographic algo-
rithms and protocols from the Noise framework. Regarding manageability,
Nebula is a modern solution with a loosely coupled design that allows scal-
ability with cloud-ready features and easier deployment than [Psec. Finally,
the performance of Nebula clearly shows an overhead for being a user-space
software application. However, the overhead can be considered acceptable in
certain server-to-server microservice interactions and is a fair trade-off for its
ease of management in comparison to IPsec.

Keywords

Overlay network, Network security, IPsec, Slack nebula, Nebula, Noise frame-
work, Noise protocol

Sammanfattning

Med framvixten av molninbyggda applikationer skapar behovet av sdkra nit-
verk och tjdnster nya krav pa automatisering, hanterbarhet och skalbarhet 6ver
datacenter. Flera 10sningar har utvecklats for att dvervinna begridnsningarna
i den konventionella och viletablerade IPsec-sviten som en siker tunnellos-
ning. En strategi for att mota dessa nya krav har varit utformningen av mjukva-
rubaserade overlaggsnitverk. I den hir avhandlingen bedomer vi implemen-
teringen av en traditionell IPsec VPN-10sning mot ett nytt sdkert overlaggs-
meshnitverk som kallas Nebula. Vi genomfor en fallstudie genom att bygga
upp ett ett experimentellt system for att utvirdera Nebula inom fyra nyckel-
omréaden: tillforlitlighet, sikerhet, hanterbarhet och prestanda. Vi diskuterar
styrkan i Nebula och dess begransningar for att sdkra kommunikation mellan
tjdnster i distribuerade molnapplikationer. Nir det giller tillforlitlighet visar
avhandlingen att Nebula inte uppfyller sina egna mal om att uppnd vérd-till-
viard-anslutning nidr man forsoker korsa specifika brandviggar och NAT. Nér
det giller sdkerhet tillhandahaller Nebula certifikatbaserad autentisering och
anvinder aktuella och snabba kryptografiska algoritmer och protokoll fran
Noise-ramverket. Nir det giller hanterbarhet dr Nebula en modern 16sning
med en 16st kopplad design som mojliggor skalbarhet med molnklara funk-
tioner och enklare distribution @n IPsec. Slutligen visar prestandan hos Ne-
bula tydligt en overhead for att vara en anviandarutrymme-programvara. Dock
kan kostnaderna anses vara acceptabla i vissa server-till-server-mikroservice-
interaktioner och &r en rittvis avvdgning om vi tar i betraktande dess enkla
hantering jamfort med [Psec.

Nyckelord

Overlagring Nitverk, Natverkssakerhet, IPsec, Slack nebula, Nebula, Noise
ramverk, Noise protokoll

Acknowledgements

I want to express my gratitude to the people who assisted and supported me in
this project.

First, my gratitude goes to my thesis supervisors from Aalto University and
KTH Royal Institute of Technology: Prof. Tuomas Aura and Prof. Panagiotis
Papadimitratos for steering me in the right direction and their willingness to
impart their knowledge.

I would also like to acknowledge the support of the advisors: MSc. Bilal
Ahmad, and Ph.D. Hongyu Jin who gave valuable input in the thesis work.

This research would not have been possible without the backing of Erics-
son Finland, specifically Ilkka Koskinen and the feedback of Andon Nikolov
and Maarit Hietalahti.

My appreciation also goes to the SECCLO program staff for their trust in
me to undertake this higher education and for enabling me to pursue my goals.

Finally, I must express my very profound gratitude to my family and all the
other people that enabled me to be at this point in life and contribute to who I
am. This accomplishment would not have been possible without them.

Thank you.

Otaniemi, 22.11.2020

Bruno Marcel Duarte Coscia

Contents

1 Introduction 1
1.1 Description of the problem 2
1.1.1 Geographically distributed services 2

1.1.2 Multiplesites 3

1.2 Researchquestion 3
1.3 Goal and objectives 4
1.4 Methodology 4
1.5 Ethics and sustainability 4
1.6 Scope and delimitation 5
1.7 Structureof thereport 5
2 Background 7
2.1 Network Address Translation (NAT) 7
2.1.1 Origin and motivation of NAT 9

2.1.2 Guidelines for NAT design 9

2.1.3 Types of NATs by mapping behavior 10

2.1.4 Other classifications of NAT 11

2.1.5 NAT Traversal 12

21.6 STUN e 13

2.1.7 Holepunching 13

21.8 TURN. 14

219 ICE 15

2.2 Overlaynetworks 15
2.2.1 Typesofsecure overlays 17

222 Meshnetworking 19

223 Servicemesh 19

2.2.4 Typesofservicemeshes 21

2.2.5 Zerotrustnetworking 22

23 IPsec.o 23

vi

CONTENTS

23.1 IPsec VPN
2.3.2 Security associations
233 SPDpolicies
234 IKEV2.
2.3.5 Peer authorization database
2.3.6 IPsec architecture
2.37 IPsecand NAT traversal
3 Nebula
3.1 Motivationand goals
3.2 Architecture and overview
3.3 Certificatesand CA
3.4 Noise framework
3.5 Handshake patterns L.
3.6 Noise state machines
3.6.1 Handshakestate.
3.6.2 Symmetricstate.
3.63 Cipherstate
377 Functions
3.8 Overview of handshake pattern IX

4 Experiment

4.1

Experiment testbedsetup
4.1.1 Architecture. L.
412 Nebulasetup
413 IPsecsetup
4.1.4 Throughput experiment
4.1.5 Latencyexperiment.

5 Evaluation results

5.1

5.2

5.3

54

Reliability
5.1.1 NATtraversal
5.12 Caseoffailure
5.1.3 Workarounds oL
5.1.4 Conclusion on reliability
Securityo
5.2.1 Conclusions on security
Manageability oo
5.3.1 Conclusion on manageability
Performanceo oL

vii

24
25
26
26
27
28
28

30
31
31
33
34
35
37
38
38
39
39
40

48
48
49
50
51
53
54

viii CONTENTS

54.1 Throughput
542 Latency
5.4.3 Conclusion on performance

6 Conclusion
6.1 Futurework

Bibliography

A Processing tokens in Noise framework
B Nebula configuration files

C 1IPsec configuration files

D Packet flow in Netfilter

66
67

68

76

79

83

86

Symbols and abbreviations

Symbols

& empty set for a not initialized variable
—> transmission of message from Alice to Bob
<— transmission of message from Bob to Alice

Operators

<— assignment operator
|| concatenation operator

Abbreviations
ACL Access Control List
AE Authenticated encryption
AEAD Authenticated encryption with associated data
AES Advanced Encryption Standard Cipher Algorithm
AH Authentication Header
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ASN.1 Abstract Syntax Notation One
BLAKE2s Cryptographic hash function successor of BLAKE-256
CA Certificate authority
CBC Cipher Block Chaining
CGN Carrier-Grade NAT
CNA Cloud-Native Applications
CRL Certificate Revocation List
CSv Comma-separated values
ChaCha20 Stream cipher related to ChaCha cipher

ix

X

CONTENTS

DH
DNS
DevOps

DoS
EAP
EIM
ESP
FQDN
GCM
HKDF
HMAC
HTTP
TANA
ICE
ICMP
ICV
IETF
IKEv2
1P
IPsec
IPv6
ISP
KCI
MTU
NAPT
NAT
NGFW
NIST
OAuth2
OCSP
OIDC
P2P
PAD
PEM
PKI
Poly1305
QoS
RFC

Diffie-Hellman key exchange

Domain Name System

Set of practices that combines Software Development (Dev)
and Information-Technology Operations (Ops)
Denial-of-Service

Extensible Authentication Protocol
Endpoint-Independent Mapping

Encapsulated Security Protocol

Fully Qualified Domain Name

Galois/Counter Mode

HMAC-based Extract-and-Expand Key Derivation Function
Keyed-Hashing for Message Authentication
Hypertext Transfer Protocol

Internet Assigned Numbers Authority
Interactive Connectivity Establishment
Internet Control Message Protocol

Integrity check value

Internet Engineering Task Force

Internet Key Exchange Protocol Version 2
Internet Protocol

Internet Protocol Security

Internet Protocol version 6

Internet Service Provider

Key Compromise Impersonation

Maximum Transmission Unit

Network Address and Port Translation
Network Address Translation

Next Generation Firewall

National Institute of Standards and Technology
Open standard for access delegation version 2
Online Certificate Status Protocol

OpenID Connect

Peer-to-peer

Peer Authorization Database
Privacy-enhanced Electronic Mail

Public Key Infrastructure

Poly1305 is a cryptographic Message Authentication Code
Quality of Service

Request for Comments

RSA
SA
SAD
SAML
SCP
SDN
SIP
SPD
SPI
SSO
STUN
TCP
TCP/1P

TLS
TURN
UDP

VPN
X.509
txqueuelen

CONTENTS Xi

Rivest-Shamir-Adleman cryptosystem for public-key encryption
Security Association

Security Association Database

Security Assertion Markup Language

Secure Copy Protocol

Software-defined Networking

Session Initiation Protocol

Security Policy Database

Security Parameter Index

Single Sign-On

Session Traversal Utilities for NAT

Transmission Control Protocol

Internet protocol suite commonly known as TCP/IP because the
foundational protocols in the suite are the the Transmission
Control Protocol (TCP) and the Internet Protocol (IP)
Transport Layer Security

Traversal Using Relays around NAT

User Datagram Protocol

Virtual Private Network

Cryptographic standard format for public key certificates
Transmit Queue Length

Chapter 1

Introduction

The adoption of cloud computing has brought some challenges in securing
communication between services. Previously, services that needed to be ac-
cessed from remote geographical sites or distinct branches of an organization
used VPNs to extend and secure their network. Now, the services are intrinsi-
cally distributed and decentralized in multiple locations due to the ubiquity of
cloud computing. Typically, VPN solutions have a centralized star topology or
a mesh design. These solutions do not scale to cloud environments and would
make the administration cumbersome. The default choice for creating secure
VPN has been IPsec for site-to-site use cases.

An attempt to overcome these limitations are so-called overlay networks [1].
Overlay networks are built on top of existing networks and offer a level of ab-
straction to enable scalability and easier administration, as in software-defined
networks (SDN).

Nowadays, a similar concept is offered by so-called service mesh solu-
tions that have been popularized to face the challenges of secure communi-
cation in cloud infrastructure. While software-defined networking is a more
generic approach to network management, service meshes focus on the capa-
bilities and the interaction of services in cloud-native applications. A service
mesh brings an abstraction layer to secure the communication between micro-
services transparently without affecting the applications. However, current
service mesh solutions are bound to an individual cloud provider or a specific
cluster of virtual machines. In case an application is distributed across difter-
ent cloud providers, unfortunately, the existing service mesh solutions cannot
provide a unified global solution.

A new secure overlay network called Nebula claims to be a cross-cloud,
cross-region, and cross-platform solution to fill this gap. This thesis studies

2 CHAPTER 1. INTRODUCTION

Nebula as a potential replacement for IPsec VPN to secure distributed ap-
plications, expecting better manageability without compromising security or
performance.

1.1 Description of the problem

In organizations with distinct sites, a goal is for all communication to resemble
the behaviour of local networks even when connecting geographically distant
locations. Moreover, secure communication is crucial to protect the data traffic
since it includes sensitive business and user information.

1.1.1 Geographically distributed services

IPsec with Encapsulated Security Protocol (ESP) as a session protocol com-
bined with the network tunneling mode is known as IPsec VPN. Currently, it
is the main choice to achieve secure communication between sites as shown
in Figure 1.1.

The current solution composes the following setting:

* There are dedicated hardware devices with firewall capabilities placed
on the border of each site facing the public internet.

* There is a proprietary IPsec VPN implementation, with partial hardware
acceleration, from the firewall manufacturer.

» Static routes are configured on each firewall to enforce the IPsec pol-
icy on the inbound and outbound traffic that extends the local network
behavior across sites.

SITE A
192.168.2.0/24

SITE B
192.168.2.0/24

Figure 1.1: VPN IPsec between two geographically distant locations.

CHAPTER 1. INTRODUCTION 3

1.1.2 Multiple sites

Eventually, the need to add more sites to the schema brings a set of complica-
tions listed below and illustrated in Figure 1.2.

* Another firewall with the same capabilities needs to be added to the new
site.

* More static routes need to be added to each firewall to keep the local
network behavior. This makes the solution not scalable.

* Inevitably, this leads to more IPsec VPN connections between the sites.

* In case of static routing, if one link is down or unavailable, there is no
recovery or alternative rerouting of traffic for that link. This, however,
does not apply when the nodes are connected through dynamic routing.

SITE A
192.168.2.0/24

SITE B
192.168.2.0/24

192.168.2.0/24

Figure 1.2: VPN IPsec between distant locations.

1.2 Research question

The conducted work compares Nebula and IPsec VPN.
We ask the following research question:

* Is Nebula a better solution than VPN IPsec to secure distributed applica-
tions that can bring ease of management without compromising security
and performance?

4 CHAPTER 1. INTRODUCTION

1.3 Goal and objectives

The primary goal of this research work is to deduce if Nebula can replace IPsec
VPN for extending local networks across geographically distant locations. The
main objectives of this work can be summarized as follows:

¢ Examine the documentation, behavior, and the source code of Nebula
and understand how it achieves the claims of global communication and
confidentiality.

* Implement an experimental system to test secure communication solu-
tions, including Nebula and IPsec VPN.

1.4 Methodology

This work falls under the evaluation category because of the emphasis of com-
parison, analysis, and assessment. The project combines the research method
of experimentation and case study to achieve its objectives [2][3].

As an experiment:

* We define a concise hypothesis that the experiment will confirm or deny.

* We design and implement a provisioned experimental system to conduct
the assessment.

» We control the variables of the experimental system.
* We analyze the performance of the technology.

* We report the procedures and results.

As a case study:

* We undertake a comprehensive exploration of the technology in the hy-
pothesis and conclude the suitability of the solution based on qualitative
and quantitative results.

1.5 Ethics and sustainability

The general purpose of this work is to evaluate secure overlay networks, specif-
ically Nebula, in comparison with IPsec. Secure technology, such as Nebula
aims to reduce crime and enable business.

CHAPTER 1. INTRODUCTION 5

We carry this evaluation using the open-source software repository pro-
vided by Slack, the company that developed Nebula. Also, we analyze the
specification of the publicly available Noise framework, on which Nebula bases
its cryptographic handshake for the communication. The work supports the
adoption of open-source software for the benefit of everyone. The testbed
configuration has been published as an open-source project under the MIT
License [4].

On the sustainable aspect, we conducted the project during a pandemic,
and the use of a virtual environment instead of physical labs enabled safe ex-
periments. In addition, the virtualized environments favor the reduction of
energy use and computational resources.

1.6 Scope and delimitation

We examine how Nebula achieves its connectivity compared to IPsec VPN.
Therefore, some assumptions should be made:

* When connecting remote locations over the Internet, it is not possible to
have full control over the network topology, or specifically over NATSs
and firewalls which the tunneled traffic needs to traverse.

» Nebula uses certificates for authenticating nodes; therefore, the rotation,
blacklisting, and distribution of certificates its assume to follow the best
practices, and it is out of scope in the present work.

* Companies commonly deploy IPsec VPN as a site-to-site solution be-
cause of the complications of host-to-host communication. However,
the design of Nebula by itself is a host-to-host solution. System engi-
neers willing to deploy Nebula should embrace this shift of paradigm
and facilitate changes in the infrastructure to enable secure communica-
tion.

1.7 Structure of the report

We organize the thesis with the following structure. Chapter 2 provides a re-
view of the literature and background for the project. Chapter 3 details the
operation and architecture of Nebula and reviews the handshake for the key
establishment in Nebula. Chapter 4 describes the testbed setup to conduct
the experiments. Chapter 5 evaluates Nebula in four key areas: reliability,

6 CHAPTER 1. INTRODUCTION

security, manageability, and performance. Finally, Chapter 6 concludes the
assessment and discusses future work.

Chapter 2

Background

This chapter summarizes some underlying technologies that enable secure
communications such as IPsec and Nebula. It begins with a study of NAT,
their classification, and why it represents a challenge when attempting host-
to-host connectivity. Then, we review overlay networks and related existing
technologies for secure communication. Last but not least, we present the
overall operation and architecture of IPsec.

2.1 Network Address Translation (NAT)

Network Address Translation (NAT) refers to a procedure rather than a struc-
tured protocol, and it is usually present in routers and firewalls [5]. The pro-
cedure is applied to IP packets in transit. NAT allows hosts in a local and
often private network to reach hosts in external and often public networks. To
deliver the expected behavior, it comprises two operations that together are
referred to as traditional NAT [6]:

1. Basic Network Address Translation or Basic NAT

This operation changes the address space of an IP packet to another ad-
dress space by seamlessly modifying the header of the IP packet without
being noticeable by the end-user.

2. Network Address Port Translation or NAPT

Network Address Port Translation (NAPT) is a method that groups many
network addresses with their ports to a single IP address and its ports.

We show an example of the common procedure of the traditional NAT in
Figure 2.1. Within the local area network, we identify devices (e.g., work-

8 CHAPTER 2. BACKGROUND

stations, laptops, printers) with a Private-Use Network Address space of the
type 192.168.100.0/24 [7]. Here, a computer identified by the local IP address
192.168.100.39/24 runs a web browser and attempts to access a remote web
server identified by the public IP address 200.10.228.131 and port 80.

Packet Before Translation
TCP SRC IP = 192.168.100.39, SRC Port = 3714;
.) TCP DST IP = 200.10.228.131, DST Port = 80
Packet After Translation
- |TCP SRC IP = 82.130.10.43, SRC Port = 5007;
E TCP DST IP = 200.10.228.131, DST Port = 80

A

E 192.168.100.39
—

E | =

192.168.100.1

(4
S]I 82.130.10.43
N LOCAL

NETWORK
NAT Translation Table
No. |Prot. SRC SRC DST DST SRC SRC DST DST
. . P PORT P PORT [PORT P PORT

1 |TCP|192.168.100.39 3714 200.10.228.131 80 |82.130.10.43 5007 200.10.228.131 80

Figure 2.1: Example of a Traditional NAT behaviour.

In the diagram, we can see the outgoing packet before it leaves the premise
with its source and destination IP addresses and ports. Later, the NAT box
takes action, changes the internal IP source address 192.168.100.39 of the
packet to the routable IP address 82.130.10.43 given by the Internet Service
Provider (ISP). The NAT also changes the source port to 5007 as illustrated in
the diagram.

Since the behavior of NATSs lacks a unified standard, different policies may
apply to the translation and assignment of ports and IP addresses [8]. We
usually find the NAT box as a part of a router or firewall since the latter is
responsible for controlling incoming and outgoing traffic at the boundary of
the local network.

The key challenge is the inbound traffic since the local network appears as
a single IP address to the external world. The NAT translation table makes it
possible to keep track of the connections and map the network addresses and
ports. It identifies and redirects inbound traffic to the corresponding internal

CHAPTER 2. BACKGROUND 9

host, as shown in Figure 2.1. The NAT deletes an entry from the translation
table if the data flow remains idle for a vendor-specific period of time [8].

2.1.1 Origin and motivation of NAT

The rapid expansion of the Internet in the early 1990s caused an enormous
demand for IP addresses for user networks and home computers. The IP ad-
dresses allocation procedure was not only facing shortcomings but also out-
right depletion of IP addresses because of the high rate of growth [8].

The need for a solution was imminent, and the design of the improved
version of IP, namely IPv6, was at an early stage. IPv6 was considered the
long-term solution, but engineers conceived NAT as a short-term solution to
meet the excessive demand [9].

The formation of the IPng working group that was later renamed to IPv6
took place in late 1994 [8]. They published the first document to standardize
IPv6 as RFC 1883 in December 1995 [10], and it reached the maturity level
of Internet Standard with the RFC 8200 in December 2017 [11], twenty-two
years later. In contrast, the first document to outline NATs was the RFC 1631
in May 1994 [12].

2.1.2 Guidelines for NAT design

The presence of NAT brought some controversies by purists, since it breaks
the initial architectural design that each host should be able to reach other hosts
directly [13]. Hence, the IETF did not exert any efforts to standardize NAT,
which resulted in arbitrary NAT implementations that produced undesirable
and unpredictable behavior in applications [14, 15].

As NAT gained popularity, the IETF had to adopt it through publishing
best practices; however, legacy NATSs can still be found on the public internet.
Here a brief list of those efforts:

* RFC 4787 Network Address Translation (NAT) Behavioral Require-
ments for Unicast UDP [15]

* RFC 5382 NAT Behavioral Requirements for TCP [16]
* RFC 5508 NAT Behavioral Requirements for ICMP [17]
* RFC 6888 Common Requirements for Carrier-Grade NATs (CGNs) [18]

* RFC 7857 Updates to Network Address Translation (NAT) Behavioral
Requirements [19]

10 CHAPTER 2. BACKGROUND

Eventually, major NAT vendors and the IETF collaboratively decided to
aim for minimizing the harm of NAT on applications. The IETF provided a
classification of NATs according to their behavior to assist this inconvenience.

2.1.3 Types of NATs by mapping behavior

At the first attempt, in RFC 3489, NATs were classified with terms such as
“Full Cone”, “Restricted Cone”, “Port Restricted Cone”, and “Symmetric”
[20]. That terminology is currently discouraged since it brought a lot of con-
fusion and did not describe the observed behavior of NATs in real-life.

To ease this confusion, RFC 4787 introduced the current standardized ter-
minology based on observed NAT behaviors [15]. IETF bases the criteria of
classifications on the reuse of the mapping of internal source IP address and
port to an external IP address and port for new sessions.

* Endpoint-Independent Mapping (EIM):

In this classification, the endpoint concerns any external endpoint of the
NAT. The NAT will reuse the same external port mapping for packets
that have the same source IP address and port. The endpoint-Independent
Mapping NAT disregards the destination IP address and port when map-
ping but ensures this behavior for packets that have the same source 1P
address and port. As an example, Table 2.1 shows in blue the source IP
address and source port that the NAT considers when reusing the map-
ping; in purple, we see the reused ports.

SRCIP | SRCPORT | <—> | SRCIP | SRCPORT

192.168.100.39 3714 82.130.10.43 5007
192.168.100.39 3714 82.130.10.43 5007
172.222.10.5 7303 82.130.10.43 2012
172.222.10.5 7303 82.130.10.43 2012

Table 2.1: Translation table for an endpoint-independent mapping NAT

* Address-Dependent Mapping:

In address-dependent mapping, the word “address” refers to the destina-
tion IP address to which the host will communicate. The NAT will reuse
the same external port mapping for packets that have the same source IP
address, port, and destination IP address. The address-dependent map-
ping NAT disregards the destination port when mapping. As an exam-

CHAPTER 2. BACKGROUND 11

ple, Table 2.2 shows in blue the source IP address, source port, and des-
tination IP address that the NAT considers when reusing the mapping;
in purple, we see the reused ports.

SRCIP PS(;{RCT DST IP <> SRCIP PS(;{RCT DST IP
192.168.100.39 3714 200.10.228.131 82.130.10.43 5007 200.10.228.131
192.168.100.39 3714 200.10.228.131 82.130.10.43 5007 200.10.228.131

172.222.10.5 7303 106.10.248.151 82.130.10.43 3801 106.10.248.151
172.222.10.5 7303 140.82.118.3 82.130.10.43 9101 140.82.118.3

Table 2.2: Translation table for an address-dependent mapping NAT

* Address and Port-Dependent Mapping:

In this classification, the address and port concern the destination IP ad-
dress and port to which the host will communicate. The NAT will reuse
the same external port mapping for packets that has the same source 1P
address, port, destination IP address, and port. As an example, Table 2.3
shows in blue the source IP address, source port, destination IP address,
and destination port that the NAT considers when reusing the mapping.
There are no reused ports in the table.

SRC DST SRC DST
SRCIP PORT DST 1P PORT | < SRCIP PORT DST IP PORT
192.168.100.39 3714 200.10.228.131 80 82.130.10.43 5007 200.10.228.131 80
192.168.100.39 3714 200.10.228.131 8080 82.130.10.43 2205 200.10.228.131 8080
172.222.10.5 7303 106.10.248.151 53 82.130.10.43 3801 106.10.248.151 53

Table 2.3: Translation table for an address and port-dependent mapping NAT

2.1.4 Other classifications of NAT

Besides the classification of mapping behavior, there are other classifications
like address pooling behavior, port assignment behavior, and filtering behavior
[15, 14].

Address pooling behavior classifies NAT according to the capability of
choosing from a pool of IP addresses to map as the external IP address on the
NAT as opposed to one IP address, as shown in the previous examples.

Port assignment behavior classifies NAT according to how the ports are
assigned when mapping. For example, using the same source port number
from the host when mapping on the external side of the NAT is called port
preservation. The difference between mapping behavior and port assignment

12 CHAPTER 2. BACKGROUND

behavior is that the former deals with how to reuse existing mapping in NAT
when creating a new session and the latter on what port to assign for the map-
ping. If port preservation is not possible because the port is already in use, the
NAT should assign a different port in an organized fashion.

Filtering behavior classifies NAT according to which external endpoints
are allowed to use the mapping placed by the NAT.

* Endpoint-independent filtering corresponds to endpoint-independent
mapping. The NAT filters out packets that do not have a current map-
ping on the translation table. However, if the internal host sends packets
to any external IP address, it creates a mapping in the NAT (endpoint-
independent mapping). The NAT will forward any incoming packets
that have as a destination that mapping.

* Address-dependent filtering corresponds to address-dependent map-
ping. The NAT will forward incoming packets to the internal host only
if the host has first sent packets to that specific external IP address.

* Address and port-dependent filtering correspond to address and port-
dependent mapping. The NAT will forward incoming packets to the
internal host only if the host has first sent packets to that specific external
IP address and port.

2.1.5 NAT Traversal

NAT traversal is a mechanism or technique to establish and maintain com-
munication between hosts that lay behind NATs. The major challenge comes
from the fact that hosts in the outer or public side of the NAT cannot start
connections towards hosts from the inner or private side.

The IETF recommends certain behaviors for NATs to facilitate the NAT
traversal. They encourage NATSs to behave as endpoint-independent mapping
along with endpoint-independent filtering [15]. Administrators more often
configure NAT with address and port-dependent mapping along with address
and port-dependent filtering. The primary reason behind this decision is a
firewall-like policy to prevent inbound connections. In addition, NAT allows
to hide the internal network topology of an organization from external threat
actors. This restrictive behavior provides the best protection but is the most
complicated NAT type to traverse [14].

In the following section, we describe the most relevant NAT traversal tech-
niques for our case study.

CHAPTER 2. BACKGROUND 13

2.1.6 STUN

Session Traversal Utilities for NAT (STUN) was initially introduced as a full
solution for NAT traversal. In practice, it did not work for all types of NATs.
On the positive side, when it worked, it did not require any changes to the NAT
behavior. Now STUN is a tool used as a component in solutions that deal with
NAT traversal [21].

Assuming an end-point lies behind a NAT, the major feature of STUN is
informing the end-point about the IP address and port assigned to it on the
public side of the NAT. In addition, since the NAT mapping expires after a
specific time, STUN provides a mechanism to keep the NAT mapping alive.

The STUN protocol also attempted to provide a complete categorization
of NATs for the end-point in the initial RFC 3489, but in practice it was not
possible due to diverse and arbitrary NAT implementations [21, 20].

An example of STUN configuration can be the following. Two STUN
agents running the STUN protocol are used. The first agent act as a client
that lies behind one or more NATs. The second agent acts as a server and lies
on the public internet. The client reaches the server, and the server can identify
the public IP address and port from which the request is received. The server
sends this information back to the client and, thus, tells the client the public
IP address and port that he lies behind.

2.1.7 Hole punching

With the hole punching technique, two hosts behind NATSs establish a connec-
tion with the help of a public addressable signaling server, also known as the
rendezvous server. Hole punching can be done with TCP or UDP. Below, we
detail UDP hole punching as it is more relevant for our case study [22].

For a representation of the operation, we name the hosts A, B, and the
server S. Hosts A and B register to the server, and the server stores two end-
points for each host [23]. The saved values are the actual IP address and port
from the host and the IP address and port assigned by the external side of the
NAT. This registration resembles the operation from the STUN protocol.

We summarize the establishing of a connection from A to B in three steps.

* A wants to connect to B, and it requests to S the endpoints of B.

* Sreplies to A with the two endpoints of B, S notifies B that A is about to
attempt a connection. S sends the two endpoints of A to B. At this point,
A and B know each other’s endpoints, and S is no longer involved.

14 CHAPTER 2. BACKGROUND

* A sends UDP packets to both endpoints of B and establishes the con-
nection with the endpoint that works first. Correspondingly, B does the
same towards A. As aresult, A and B establish a direct connection with-
out relaying traffic to S.

The term hole punching comes from the fact that internal hosts from a NAT
gateway start by sending outbound traffic and, therefore, “punch holes” in the
NAT to create a new session. This hole allows the establishment of an inbound
connection, as described above.

One important observation is the filtering behavior because this NAT traver-
sal technique requires the hole punching to be synchronous. The expected
filtering behavior is to drop inbound traffic that does not correspond to any
mapping in NATS.

UDP hole punching is more predictable with independent mapping and
filtering NATs. With the previous example, it would be enough for A to know
the external port that B used to register in S. However, with the dependent
mapping of addresses and port, the coordinated punching of holes is necessary.

Besides the potential problem of different filtering behavior in NATs, UDP
hole punching relies on NAT to map the same internal source ports to the
same external source ports. In addition, NATs cannot always guarantee port
preservation; therefore, it directly affects the outcome of a UDP hole punching
operation.

2.1.8 TURN

Traversal Using Relays around NAT (TURN) its a relay extension to Session
Traversal Utilities for NAT (STUN). When very disruptive NATSs are in be-
tween nodes to attempt a connection, NAT traversal techniques such as hole
punching fail, and there is no other option than using an intermediate node to
relay the communication. This relay node is typically on the public Internet
to be reachable for the nodes behind NATSs [24].

The most significant advantage of using TURN is that it is almost guaran-
teed to be successful when traversing the NAT. However, relaying the traffic
on a node requires high bandwidth from the public relay node and has higher
latency than a direct connection between nodes.

A typical operation of TURN comprises a TURN client requesting an-
other node that acts as a TURN server to behave as a relay. The TURN server
allocates an IP address and port for that client to use as a relay when commu-
nicating with other peers. This allocation allows the client to communicate
with multiple peers. When the TURN server receives application data from

CHAPTER 2. BACKGROUND 15

peers, before relaying data to the client, it encapsulates the data together with
information on the peer who sent the data.

219 ICE

Interactive Connectivity Establishment (ICE) is a NAT traversal technique de-
signed to avoid assumptions in the network’s topology or behavior of NATSs
and provide a complete and reliable solution to traverse NATSs [25]. ICE works
with UDP but also operates with other transport protocols such as TCP. Among
the many features and capabilities, we describe here the essential operation of
ICE.

The endpoints that want to establish communication are named ICE agents.
Each ICE agent collects a variety of candidates, which is a combination of an
IP address and a port. There are many types of candidates that ICE collects;
some of them directly from the physical or logical network interface, and oth-
ers discovered with STUN and TURN servers.

ICE first sorts the candidates by priority, then tests them systematically
to find which is the highest-priority pair of candidates that would allow the
communication between the two hosts to work [14].

In the interest of our case study, we can say that ICE combines many
NAT traversal techniques, including hole punching, as described previously
in this chapter. When hole punching fails, ICE uses the relaying technique
from TURN to find a reliable solution.

2.2 Overlay networks

An overlay network is a network built on top of an existing network [1]. As
a simple example, the almost non-existent Dial-up Internet is an overlay upon
the telephone network infrastructure [26].

These days, overlay networks are developed on top of the widespread TCP/IP
protocol stack, specifically in the application layer. Overlay networks are pop-
ular nowadays for their capability in solving problems that require processing
and distributing a vast amount of data while being scalable and affordable.
Live streaming of videos is a typical example.

To function, the overlay network depends on the underlay network for es-
sential networking operations like routing of IP packets in the case of IP. Nodes
in an overlay network link logically, while in the underlay network, they might
extend across many physical hops in the network.

16 CHAPTER 2. BACKGROUND

In current communications solutions we often see the division of traffic
into data plane and control plane, for instance in the session initiation protocol
(SIP) or software-defined networking (SDN). Overlay networks are useful in
these two scenarios. The overlay network as a data plane (also known as for-
warding plane) can cooperate in forwarding and propagation of data. Overlay
networks can also route control messages and achieve connectivity between
nodes as control plane elements.

Even though overlay networks present a performance overhead and are not
as fast as the dedicated routers which run the Internet, we can identify some
benefits [1]:

1. Incremental deployment:

The underlay network, hardware and routers do not require modifica-
tions for the overlay network. This property allows the gradual place-
ment of nodes in the overlay network with the benefit of monitoring and
controlling routing paths between nodes along the deployment.

2. Adaptability:

The Internet infrastructure might fall behind some concerns that are
application-specific. Whereas, overlay networks can be shaped to re-
spond to this limitation based on metrics such as latency, bandwidth,
and security.

3. Robustness:

Due to the adaptable nature of overlay networks, multiple alternative
paths can be provided to route around faults. When having a sufficient
amount of nodes, the overlay network can overcome network and node
failures. As an example, when a direct path is not available, the traffic
can be forwarded to alternative ones using additional nodes. This cre-
ates a network overhead at the expense of keeping the communication
between nodes.

On the other hand, overlay networks have some limitations and we can
point out three central challenges [1]:

1. Reachability:

Because of NATs and firewalls in the underlying network of TCP/IP
within the Internet, there is no guarantee of end-to-end reachability.
Most of the time, overlay networks are unaware of the underlying net-
work topology and the context in which the overlay network is being

CHAPTER 2. BACKGROUND 17

used. In consequence, overlay networks require special techniques to
achieve connectivity between nodes.

2. Management and Administration:

Overlay networks in practice require a management interface to manage
the network. When more nodes and parties join the network, managing
multiple domains becomes a complex task. For this reason, most over-
lay networks are limited to a single administrative domain. In addition,
the administrator of the overlay network typically is not present in the
node that performs the overlay routing, causing the need for advanced
techniques in detecting and correcting fault nodes.

3. Overhead:

Since overlay networks run commonly on top of the Internet, they can-
not be as fast and efficient as the dedicated hardware that comprises the
routers. The traffic of the overlay network goes through different routers
and devices across the Internet. Therefore, it does not possess enough
information about the underlying topology to use in favor of routing de-
cisions costing an overhead compared to the Internet.

2.2.1 Types of secure overlays

Here we list some relevant secure overlay networks:

* WireGuard: WireGuard is an open-source secure VPN tunnel focused
on simplicity, high performance, and ease-of-use. It aims to have higher
usability than IPsec by minimizing misconfiguration-caused failures,
and be more performant than user space TLS-based solutions (such as
OpenVPN) by running in kernel space [27, 28].

WireGuard ensures simplicity by being cryptographically opinionated
— it lacks cipher and protocol agility by design, and uses a single cryp-
tographic protocol from the Noise framework. The selected protocol
(Noise IK) uses Curve25519 high-speed elliptic curve function, enabling
lightweight and fast negotiation. It has a single round trip key exchange
and inherent protection against denial of service attacks.

Key distribution in WireGuard is inspired by OpenSSH, being agnos-
tic about the key distribution mechanism. Any medium can be used to
exchange the public keys of the peers, after which they are able to com-
municate.

18

CHAPTER 2. BACKGROUND

Finally, the attack surface of WireGuard is minimized by having a sim-
ple, small codebase with less than 4000 lines of code, easy to audit and
verify its security.

Tailscale: Tailscale is a mesh VPN solution built on top of WireGuard.
It enhances WireGuard with features such as automatic mesh genera-
tion, single sign-on (SSO), multi-factor authentication, and centralized
access control [29].

Tailscale simplifies the connection between the nodes by assigning a sta-
ble, unique IP address to each of them. The IP address stays the same
regardless of the physical location of the device. Here, the devices au-
thenticate using existing identity providers based on SAML, OAuth2, or
OpenID Connect (OIDC). As a result, two-factor and multi-factor au-
thentication mechanisms implemented by the selected identity provider
can be used. In addition, to restrict access to sensitive servers, Tailscale
implements a role-based access control mechanism. In particular, it has
special policy files for declaring groups (called roles in role-based access
control), hosts (human-readable names to refer to a particular server),
and lists of rules.

Tailscale provides closed source user-friendly applications for nearly all
platforms and an open-source command-line client for Linux.

Tinc: Tinc is a VPN daemon, creating secure private networks between
the hosts. It enables easy configuration and scalability by automatically
creating tunnels between specified endpoints [30].

In contrast with WireGuard, Tinc operates in the user-space. Running
in user-space reduces performance. On the positive side, it ensures easy
portability and kernel safety against implementation errors. The most
notable features of Tinc include:

— Compression (using zlib or LZO), encryption, and authentication
(using LibreSSL or OpenSSL, message authentication codes, and
sequence numbers).

— Automated full mesh routing using direct connections, without in-
termediate hops.

— NAT traversal.

— Easy expansion; adding a node implies only adding an extra con-
figuration file.

CHAPTER 2. BACKGROUND 19

Tinc is open-source, runs on many operating systems, and supports [Pv6.
In addition to hole punching to traverse the NAT, it relies traffic through
nodes similar to the TURN specification.

e ZeroTier: ZeroTier is an open-source network virtualization platform,
enabling private and secure connections between nodes. It is designed
to be easy to use and run on any platform. ZeroTier aims to minimize
latency by using peer-to-peer links whenever possible. It claims to have
an overhead comparable with OpenVPN and IPsec, and typically con-
sumes less than 64MB of RAM [31].

2.2.2 Mesh networking

In a mesh network or mesh topology, the nodes connect dynamically and di-
rectly. The cooperation between nodes enables many-to-many communication
from a source to a desirable destination with the property that each node acts
as both host and router [32].

Mesh networks do not require a particular infrastructure to operate. They
adapt dynamically and self-organize with the proper configuration to function.
This organization is handled by a common shared policy between all the nodes.
To find the best routes from the source to the destination, a stream of data is
sent across all nodes in between, and the best routes are decided based on
metrics such as hops, link quality, and throughput.

Mesh networks can be used in wireless communication, wired networks
[33], as well as software applications like overlay networks. In consequence,
we can point a few advantages [32]:

1. Easy to install, deploy, maintain, and less expensive to operate.

2. The workload of routing and forwarding distributes dynamically across
the nodes.

3. Quick reaction to failures in nodes.

4. The mesh topology is malleable and easy to change.

2.2.3 Service mesh

To describe what is a service mesh, first, we must briefly introduce Cloud-
Native Applications (CNA) since it is a component that enables the service
mesh capabilities. Cloud-Native Applications are systems conceived in the

20 CHAPTER 2. BACKGROUND

cloud able to utilize the full extent of the capabilities only found in cloud com-
puting providers, e.g., autoscaling [34].

Service mesh architecture is an application infrastructure layer on top of
cloud-native applications. Since it is a relatively recent concept, we can re-
fer to the established interpretation of William Morgan, who has the credit to
originate the term service mesh:

“A service mesh is a dedicated infrastructure layer for handling
service-to-service communication. It is responsible for the reli-
able delivery of requests through the complex topology of services
that comprise a modern, cloud-native application. In practice, the
service mesh’s implementation is an array of lightweight network
proxies deployed alongside micro-services, without the applica-
tions needing to be aware.” [35]

The service mesh is an abstraction layer that allows, among other matters,
to separate security from the application, for example, using TLS to secure the
communication between micro-services. Previously, securing communication
with TLS was the developer’s responsibility. With the given separation, devel-
opers can now focus on software development without the need to understand
how the infrastructure operates and the operations teams are responsible for
securing communication.

In the past decade, the combination of developers with the operations teams
adopted the DevOps name. Among the various interpretations of what De-
vOps refers to, we provide the following definition:

“DevOps is a collaborative and multidisciplinary effort within an
organization to automate continuous delivery of new software ver-
sions, while guaranteeing their correctness and reliability.” [36]

Service mesh represents an essential change in DevOps scope since previ-
ously, DevOps was mainly dealing with the management of software releases.
With a service mesh, developers do not need to write code to enable capabil-
ities that the operations teams need, and the operations teams do not need to
re-compile the system to apply changes in the system.

Figure 2.2 presents the generic topology of a service mesh. Here, each
service instance is augmented with a proxy instance, also known as a side-
car proxy, that handles interservice communications, security, and monitoring
related issues. This communication happens at the data plane. On the other
hand, the control plane manages the behavior of the proxies. The control plane
is typically connected to a command-line interface, an API, or a user interface
application to configure and control the app.

CHAPTER 2. BACKGROUND 21

$>_

CLI/ API

Control

Plane Service Mesh Control Plane

Data Plane
East-West Traffic

Figure 2.2: Service mesh topology [37].

2.2.4 Types of service meshes

Several open-source service mesh solutions have been developed. Below, we
summarize some of them and describe the use-cases for each.

* Linkerd: Linkerd was the fist solution to popularize the term “service
mesh”. Linkerd, similar to most service meshes, provides reliability,
observability, and security features. It includes in one package a con-
trol plane “Namerd” and an ultralight linkerd-proxy next to each service
instance as a data plane [38].

The solution is focused on simplicity, lightweight implementation, and
low latency. In particular, Linkerd 2.x is significantly faster and smaller
in size than Linkerd 1.x, as well as other, more flexible solutions such
as Istio. The light weight is achieved at the price of having fewer fea-
tures and supporting the Kubernetes platform only [39]. Therefore, it
is best suited for minimalistic Kubernetes-based applications where no
additional flexibility is required.

* Istio: Istio is an increasingly popular service mesh solution, originally
developed by Google, IBM, and Lyft. It is a platform-agnostic solution,
providing universal control plane to manage the service proxies. It pairs
with a data plane, such as Envoy or Nginx proxy. Istio is designed to be
portable, scalable, and support different types of applications [40].

22 CHAPTER 2. BACKGROUND

Such flexibility and abundance of features make Istio the most widespread
solution nowadays [39]. However, the flexibility comes at a price of the
deployment and support complexity that may be unnecessary for appli-
cations with only basic needs.

* Envoy: Envoy is a high-performance application proxy for modern cloud-
native applications [41]. It can act either as a standalone proxying layer
or as the data plane in service mesh applications. To achieve service
mesh functionality, it is typically combined with control plane providers,
such as Istio as a sidecar proxy.

* Consul: Consul is another service mesh management framework, oper-
ating in the control plane [42]. It needs to be paired with a sidecar proxy
provider such as Envoy. Consul may be the best choice for a system that
needs multiple platform support, such as both Kubernetes and virtual
machines, but does not need the complexity of Istio.

2.2.5 Zero trust networking

Zero trust networking is a framework based on the idea that no devices or users
can be trusted regardless of being inside or outside the network perimeter [43].
It is different from traditional IT network security, where it is hard to get inside
the network perimeter, but once inside, everyone is trusted and the traffic is not
cryptographically protected. In zero trust networking, on the other hand, the
identity of each device and user, and authorization of each action, needs to be
verified.

In the cloud, zero trust networking aims to build secure network commu-
nication without relying on the physical or logical security of the underlying
physical or virtual network of the cloud platform.. This approach is moti-
vated by the fact that nowadays the information of companies is spread across
the cloud servers and data centers, rather than being stored in a single loca-
tion [44].

One of the fundamental principles behind zero trust networking is that the
network is never trusted: there are attackers on both the inside and the outside
of the network. Another principle is the requirement of authentication and
authorization of both the client subject and device before establishing a session
with an endpoint.

As mentioned above, zero trust networks focus on protecting the most criti-
cal resources of the network such as services, databases, and network accounts.
These resources represent protect surfaces within the zero trust framework.

CHAPTER 2. BACKGROUND 23

Once the protect surfaces are determined, the traffic between them is identi-
fied. This allows the cloud architects to create a micro-perimeter around each
protect surface [45].

The micro-perimeter is an optimal micro-network built as an enclosure for
the protect surface, aiming to provide the best-suited security. These micro-
perimeters are created with a segmentation gateway, also called the next gen-
eration firewall (NGFW). NGFW, which could be either virtual or physical,
guarantees that only legitimate traffic can access the protect surface. NGFW
needs to be application-aware and filter access to web services through deep
packet inspection. For this reason, it focuses on Layer 7, rather than Layers 3
and 4 as in current generation firewalls [46].

Despite the presence of NGFW, attackers can attempt to disrupt the net-
work infrastructure targeting Layers 3 and 4. In this case, the attacker can in-
terfere with the routing protocol, rather than targeting a single protect surface.
By this, a denial of service (DoS) can be caused. Such attacks can propagate
false routing information and thus, obstruct network operations. Papadimi-
tratos et al. [47] present an overview of approaches against routing infrastruc-
ture attacks in the Internet. In particular, they summarize methods that prevent
such attacks and they outline methods that detect and react to routing protocol
abuse.

2.3 IPsec

Internet Protocol Security (IPsec) is a secure network protocol suite that pro-
vides the following security services: source authentication, access control,
data integrity, confidentiality via encryption, limited traffic flow confidential-
ity, data integrity, and replay attack prevention [48].

The IETF (Internet Engineering Task Force) knew that security was a pri-
mary concern for the growing Internet. After a long historical debate about
which layer of the Internet stack should be secured, IETF settled on the idea
to place the security solution in the network layer protocol [49].

IPsec is placed between the transport layer and the link layer, in practice
endowing the IP protocol with security services. This decision has two pri-
mary motives:

1. Applying security on the network layer does not require modifications
to existing applications.

2. End users that operate in the application layer do not need to deal with

24 CHAPTER 2. BACKGROUND

the intricacies of cryptography and security that might lead to security
breaches if not configured correctly.

2.3.1 IPsec VPN

Virtual Private Networks (VPN) are overlay networks usually running on top
of public networks, i.e., the Internet, to simulate private networks [49]. VPNs
provide the same properties of a typical private network, such as connectivity,
QoS, and privacy by connecting two private endpoints with encryption. VPNs
require a tunneling protocol such as IPsec to encapsulate the data packets from
one form to another.

Authentication Encapsulated Security

I

]

I

]

Header (AH) Protocol (ESP) :

I

I

- - -] i

] I

Transport Tunnel Transport : Tunnel :
Mode Mode Mode i Mode i
] I

Figure 2.3: IPsec Session Protocols.

In effect, IPsec VPN is a virtual private network that uses IPsec to encrypt
and encapsulate IP packets. The stream of encrypted packets forms a tunnel
across the untrusted IP network [26].

There are two session protocols in the [Psec protocol suite: Authentica-
tion Header (AH) and Encapsulated Security Protocol (ESP). AH is no longer
a part of the standard and IETF discourages the use of AH since ESP can pro-
vide the same security services of AH when using it with integrity and no
confidentiality [48]. AH attributes its existence to the American Export con-
trols in the 1990s as they compelled product developers to separate the support
for integrity and confidentiality [50].

These two session protocols have two operation modes; the host-to-host
transport mode and the network tunneling mode, as shown in Figure 2.3.

We will center the discussion of IPsec on ESP in tunnel mode. The tunnel-
ing mode is more appropriate for VPNs, and I[Psec in practice is used mainly
in tunnel mode.

CHAPTER 2. BACKGROUND 25

Now we provide a description of the operation of IPsec.

IPsec VPN or IPsec with ESP in tunnel mode encapsulates and encrypts an
IP packet within another IP packet. The outer IP packet possesses a standard
IPv4 header that routers on the Internet can forward the datagram like any reg-
ular IP packet. The encrypted payload of the outer IP packet is another IPsec
datagram that will be processed at the destination. Once the IPsec datagram
arrives at the destination, the payload is decrypted and unwrapped and then
passed to the upper-layer protocol, typically TCP or UDP.

2.3.2 Security associations

The communication in IPsec happens between a pair of nodes, e.g., two routers,
two hosts, or a host and a router. IPsec datagrams require establishing first a
security association (SA) between the pair of nodes. The SA comprises a uni-
directional network-layer logical connection from the source to the destination.
Typically, communication is bi-directional between the pair of nodes, which
requires establishing two SAs between the nodes, one for each direction.

Both the source and the destination nodes keep the state of the SA in a
Security Association Database (SAD). Each entry in the SAD represents a
SA.

A typical SA includes [13]:

1. The Security Parameter Index (SPI) that acts as the identifier for the SA.
SPI works as a lookup parameter in the SAD at the receiving end.

2. The origin network address of the SA and the destination network ad-
dress of the SA.

3. The encryption algorithm, e.g., AES with CBC mode, NULL, AES with
GCM [51].

4. The encryption and authentication keys

5. The algorithm for an integrity check, e.g., HMAC with SHA2 [51].

When the source node of communication needs to craft an IPsec datagram
to the destination, it accesses the SAD to lookup which SA matches the target.
After matching an SA, IPsec encrypts and authenticates the datagram with the
parameters in the SAD entry. The destination node needs to keep the same
settings on the SAD to apply the reverse operation of authenticating and de-
crypting the datagram. An IPsec node maintains many SAs in the SAD, one

26 CHAPTER 2. BACKGROUND

Kernel _:| IPsec SA L Kernel
Space i SAD IPsec { IPsec SAD | Space

ESP Protects Data

Figure 2.4: IPsec Security Association.

for each node which requires communication. The SAD is a data structure in
the kernel space of the operating system.

Figure 2.4 shows the components of secure transmission of IPsec data-
grams: IPsec as part of the kernel of the operating system, the correspondent
SAD in the kernel space, and the unidirectional SA that enables the crafting
of ESP payloads.

2.3.3 SPD policies

The source node of the secure communication can have several network in-
terfaces, or it can be a gateway instead of an endpoint computer. In the latter
case, the gateway might receive IP packets from different origins and there is
no guarantee that these packets are secured with IPsec.

[Psec maintains another data structure called the Security Policy Database
(SPD) to segregate IP packets that should be secure. The SPD dictates which
IP packets to protect and which SA to use. To select a specific action, the
SPD filters the IP packets based on the transport-layer protocol, local network
address, local port, remote network address, and remote port. It can discard,
bypass, or protect the matching IP packet.

2.3.4 IKEv2

We previously addressed the content of an SA and the requirement to place
the same state of the SA on each of the communicating nodes. The network
administrator can attain the remaining tasks, such as manually setting the SPI,
keys, algorithms for authenticating, and encrypting the IP packets. However,
in the actual world, IPsec VPN networks comprise hundreds or thousands of

CHAPTER 2. BACKGROUND 27

IPsec nodes, so that manually creating SAs is impractical and difficult to man-
age.

The Internet Key Exchange Protocol Version 2 (IKEv2) [52], also known
as IKE, is a component of IPsec used for performing mutual authentication
and establishing and maintaining Security Associations (SAs). IKE provides
a procedure to automate the creation of SAs and to distribute them accordingly
to distant geographic locations.

The prior version of IKE, also known as IKEv1, has two phases; the first
phase creates a bi-directional IKE security association (IKE SA) that is en-
tirely different from the IPsec SA discussed in previous sections. The second
phase is to establish the conventional IPsec SAs in the source and destination
nodes. On the other hand, IKEv2 eliminates the usage of phases and relies on
four messages (IKE_SA_INIT, IKE_AUTH, CREATE_CHILD_SA, and IN-
FORMATIONAL). In most cases, four messages are sufficient to create the
IKE SA and one child SA, however, IKE can generate several SAs if needed.

The created IKE SA arranges an authenticated and encrypted channel be-
tween the source-destination nodes. The protocol negotiates authentication
and encryption algorithms, then generates the session key that the IPsec SA
would use.

Certificates and public key signatures are not the only method to authen-
ticate IKE SA. EAP or pre-shared keys between the source and destination
node can also be used. When using pre-shared keys, it is crucial to assure as
much randomness as the most robust key in the negotiation. Otherwise, there
is room for dictionary and social-engineering attacks.

The source and destination nodes negotiate algorithms for authentication
and encryption to generate the SA as described previously. The messages are
signed by both nodes, therefore revealing their identity to each other through
the established secure channel. Finally, the parties possess an SA in each direc-
tion and session keys for authentication and encryption of data. Using the SA
and the session keys, each node can send secure messages through the IPsec
tunnel.

2.3.5 Peer authorization database

The Peer Authorization Database (PAD) links the SPD and a security associ-
ation management protocol, such as IKE [48]. PAD is typically needed when
authenticating endpoints with certificates since IKE uses a fully qualified do-
main name (FQDN) as an identifier for the endpoint. SPD uses IP addresses as
identifiers for selecting the policies. PAD provides a secure mapping between

28 CHAPTER 2. BACKGROUND

the two identifier spaces, the FQDNs and the IP addresses.

PAD ensures that the resolved IP from the FQDN in the certificate corre-
sponds in a secure to an IP address from the SPD. Overlooking this comparison
can lead to some vulnerabilities [53].

2.3.6 IPsec architecture

Finally, we have all the components to illustrate the IPsec architecture, as
shown in Figure 2.5. These components include three databases to manage
policies and security associations, a handful of protocols like ESP, IKE, AH
and various RFCs to help implementers achieve their goals. Experts have criti-
cized IPsec for having design issues and for its deployment complexity in real-
world scenarios [54]. Such complexity needs to be addressed to minimize the
surface of potential vulnerabilities and to allow an attainable auditability.

Untrusted IP Network
4 User Space N 4 User Space N
. - - N -

PAD’ IKE (v2) I t 1. Key Exchange j IKE (v2) |<):F'AD
I‘”'é""- ___________________ ‘.""‘K""I

Kemel _:| [] IPsec SA Pair (‘;_ Kemel
Space ‘ SAD IPsec IPsec SAD | Space

— 2. ESP Protects Data -

Figure 2.5: IPsec Architecture [RFC 4301] [48][55].

2.3.7 IPsec and NAT traversal

When a host attempts to communicate with IPsec AH in the presence of NATS,
the NAT changes the header of packets, which causes the authentication and
integrity check on the destination of the communication to fail [56]. However,
in case of IPsec ESP, the NAT does not see the encrypted port numbers and
cannot modify them. Therefore, IPsec encapsulates the original secure packet
with a UDP header on port 4500 to traverse the NAT [57].

CHAPTER 2. BACKGROUND 29

The newly wrapped ESP packet with a UDP header, allows the NAT to
maintain port mappings and forward these packets to hosts behind the NAT [58].
The UDP encapsulation allows the packets to go through NATs, and the desti-
nation unwraps the packet to treat it accordingly by IPsec. The bottom line of
NAT traversal for IPsec is UDP encapsulation. However, more operations take
place to enable encapsulation, including detecting if the destination supports
the NAT traversal, detecting how many NATSs exists between the endpoints,
and negotiating how to use UDP with IKE [59, 52].

Chapter 3
Nebula

Nebula is a scalable open-source global overlay network developed by Slack to
meet the use case of server-to-server communication in multi-cloud providers,
as shown in Figure 3.1. Nebula runs as an application in the user space, creates
virtual interfaces, encapsulates the IP communication in UDP datagrams, and
uses the hole punching technique to traverse NATs.

Before deciding to build Nebula, the developers experimented with alter-
natives that did not meet their expectations regarding performance, security,
ease of use, and other features. Nebula took inspiration from the Tinc project
for their NAT traversal approach and enhanced it with encryption, security
groups, certificates, and tunneling.

=il

Eé; =il

Cloud Provider B
192.168.2.0/24

Cloud Provider A
192.168.2.0/24

Cloud Provider C
192.168.2.0/24

Figure 3.1: Secure communication between multi-cloud providers.

30

3.1

CHAPTER 3. NEBULA 31

Motivation and goals

Nebula aims to achieve the following goals [60]:

3.2

Security: The encryption of traffic is the most important requirement.
Nebula uses the Noise cryptographic framework to secure the channels
between nodes.

Multi-cloud and cross-platform: As mentioned in the problem state-
ment, Slack initially relied on IPsec to connect geographical locations in
the cloud, complicating their scheme when adding new sites or regions.
With an application-layer software-based solution, Nebula not only con-
nects servers in the cloud but has the ambition to be cross-platform and
connect laptops, desktops, and smartphones.

High-level filtering with security groups: To avoid filtering solely by
IP addresses, it is possible to use group memberships through certifi-
cates and filter the nodes by their identity. This feature is useful for
ephemeral hosts in a cloud environment.

Strong identity: Nebula provides authentication of nodes through non-
standard certificates, along with a tool for creating a CA and signing the
certificates.

Speed: Initially, when using IPsec and connecting distant locations, all
the traffic was relayed to an intermediate host, causing a penalty in per-
formance. With Nebula through the hole-punch technique, if successful,
the host-to-host connection is achieved directly without intermediaries.

Testing: Typically, when applying filtering rules over a network, there
is a risk of mistakes. Nebula allows testing filtering rules individually
on nodes before extending the policy to the entire overlay network.

Architecture and overview

There are two binaries bundled with Nebula. The main application, nebula,
and the utility to create CAs and sign certificates nebula-cert. The CA
and the certificates have a default validity period of 365 days.

After generating the CA key pair, we create certificates for the nodes spec-
ifying the overlay network address and the membership of security groups for

32 CHAPTER 3. NEBULA

that certificate. When running Nebula, we specify a configuration file as a pa-
rameter; it creates the virtual interface, and the node is ready for establishing
communication.

There are two types of behaviors when running Nebula. Either the node is
a lighthouse or not. When running Nebula as a lighthouse, the node acts as a
rendezvous server, similar to the STUN specification. Nodes reach the light-
house, and the lighthouse informs them about their external mapping caused
by the NATs. With the help of the lighthouse, nodes can traverse NATSs using
the hole punching technique.

If nodes are in the same local network, they establish a connection directly.
Lighthouses share nothing with other lighthouses and are used only for nodes’
discovery.

The lighthouse behavior is an option among many others from the config-
uration file. Through configuration, one can specify the MTU, queue length,
DNS server, static hosts mapping, logging, and filtering through the built-in
firewall.

Nebula does not do routing per se; however, it is considered a mesh net-
work in the sense that nodes can connect directly with the help of the light-
house.

Figure 3.2 shows the architecture of Nebula. Light blue IP addresses rep-
resent the overlay Nebula network, whereas black color IP addresses are from
the underlying network. The number 4242 corresponds to the port in which
Nebula is operating. Nodes B and C are from the same network, whereas node
A is in a distant location. With the overlay addresses, all the nodes can connect
transparently to each other, despite the NATSs.

Lighthouse

192.200.1.100:4242
172.20.1.100

Node A / KN Node B
NAT A /s N NAT B
e 172'19'19'19 e
10.40.40.5 172.18.18.18 10.40.40.7
192.200.1.5:4242 192.200.1.7:4242
10.40.40.8

192.200.1.8:4242

Figure 3.2: Nebula architecture.

CHAPTER 3. NEBULA 33

3.3 Certificates and CA

Public key infrastructure (PKI) is a technology for managing the lifecycle of
public key certificates. It uses asymmetric cryptography and can be used to
provide confidentiality and integrity of data, as well as authentication and non-
repudiation of entities and actions [61].

Below, we first describe several key components of the PKI. Then we spec-
ify their implementation in Nebula.

Public key certificate, or digital certificate is a digital document that ties
the public key of the subject with its identity.

Certificate Authority (CA), also referred to as Certification Authority, is a
trusted organization that identifies and authenticates the entities and creates a
certificate signed by its private key. The CA is the foundation of the infras-
tructure as it is the only unit that issues certificates. The role of the CA also
includes the verification of subject identities by third parties.

Certificate chain shows the path to a certificate through the chain of certifi-
cates between the root CA (also referred to as the trust anchor) and the given
certificate. To verify a certificate at the end of the chain, each of the certifi-
cates in the chain needs to be verified. This is an important component of the
PKI, since any of the certificates in the chain can be revoked. This hierarchy
of the certificates is also known as the chain of trust.

Certificate revocation list (CRL) is used to control the status of certificates
(valid, invalid, unknown). It is a digitally signed object that defines the list of
the certificates that have been revoked by the CA. The list should be checked
by the people or devices that are about to rely on the certificate, to ensure
that it has not been revoked and can be trusted. In addition to the CRLs, an
online protocol for checking the revocation status of certificates, called Online
Certificate Status Protocol (OCSP), can be used. OCSP enables requesting
the status of an individual certificate in real-time, rather than downloading
and processing a potentially very large CRL.

Nebula uses public key certificates to verify the nodes’ identity when con-
necting to each other. The certificate format, however, is different from the
well known X.509 standard [62].

To set up a Nebula network, a certificate authority is created [63]. This CA
is the root of trust for the particular network and needs to be stored in a secure
place. The CA then issues certificates for each node in the network. While in a
typical PKI the certificate chain can contain multiple intermediate certificates
between the end-entity and the root, a Nebula certificate chain consists of only
one certificate and two entities: the root CA and the node as the subject of the

34 CHAPTER 3. NEBULA

certificate. The certificates include custom attributes such as security groups,
environment, and roles [60].

To implement certificate revocation, Nebula uses blacklisting. Each node
stores a list of certificate fingerprints that it will refuse to communicate with.
Once a node is suspected to be compromised, the blacklists of all the nodes
need to be updated. In addition, Nebula node certificates are recommended to
have a short lifetime to reduce the attacker’s time window [64].

Moreover, Nebula supports a configuration where the nodes trust multiple
CAs at the same time. In this case, one of the CAs signs the certificates, while
the others are stored offline for emergency situations. In case the primary
CA is compromised, this will allow transitioning to signing with the new CA
immediately and removing the first CA from the trusted CAs. The mechanism
can also be used to substitute an expiring CA certificate [65].

3.4 Noise framework

Cryptographic protocols for secure communication might vary between ap-
plications depending on the use case. Cryptography is intrinsically complex
to implement correctly, which brings the strategy to develop a general and
multipurpose protocol such as the IPsec suite (e.g., gateway-to-gateway, host-
to-host, etc). One alternative is having a specific and tailored secure protocol
for each use case with the high risk of being undermined by security flaws or
at least being prone to vulnerabilities.

The Noise framework attempts to address the gap between the general and
specific protocols. Noise is not a single generic secure protocol but rather
a generator of secure protocols from which implementers can choose to suit
their needs when designing a networking solution. Through a simple language,
combining five validity rules and a few cryptographic primitives, the Noise
framework can yield protocols with specific security properties [66, 67, 68,
69].

The cryptographic primitives that the Noise framework supports are [67]:

1. A Diffie-Hellman group
2. A Hash function

3. A Key derivation function
4. An AEAD cipher

Depending on the generated protocol, the main security properties are [67]:

CHAPTER 3. NEBULA 35

 Confidentiality

* Authentication and integrity

* Key compromise impersonation (KCI) resistance
» Forward-secrecy

* Resistance against replay attacks

A Noise protocol falls in the family of authenticated key exchange proto-
cols, which are based on a Diffie-Hellman key agreement between an initiator
and aresponder [69]. However, there is no strict separation between the phases
of key establishment and transmission of data through the channel. Depend-
ing on the generated protocol or pattern, the protocol can transmit application
data even in the handshake phase as we will discuss in the following sections.

3.5 Handshake patterns

The key establishment, or also called a handshake pattern in Noise terminol-
ogy, is the main contribution of the Noise framework.

The pattern language that identifies the handshake is based on Alice and
Bob notation. It is worth mentioning that Alice represents the party on the left
of the communication. When expressing the handshake pattern in a canonical
form, it implies that Alice is the initiator while Bob is the responder. By re-
verting the arrows, the patterns can also be presented with Bob as the initiator
without changing the handshake behavior. In the present work, for readability,
we will present the patterns in the canonical form.

Interactive handshake patterns, also referred to as fundamental patterns,
comprise two characters. Each character specifies how to process the static
key from the initiator and responder respectively [66]. These two characters
identify and define the behavior of the protocol, while other additional char-
acters act as modifiers. This work will focus on these fundamental handshake
patterns.

Here are the possible values for the first character of the pattern, i.e. ini-
tiator’s static key:

* N = No static key in use

» K = The static key is Known to responder

36 CHAPTER 3. NEBULA

* X = Static key for initiator Xmitted (“transmitted”) to responder

I = Static key for initiator Immediately transmitted to responder, despite
reduced or absent identity hiding

The second character can take the following values, i.e. responder’s static
key:

* N = No static key in use

* K = Static key for responder Known to initiator

* X = Static key for responder Xmitted (“transmitted”) to initiator
Here an example of the fundamental pattern IN:

IN:
-> e, s
<— e, ee, se

The handshake pattern comprises several message patterns, which contain

29 9% 9% 9% ¢

tokens. By combining specific tokens from the following set ("e”, ’s”, “ee”,
“es”, “se”, “ss”, “psk”), we deduce how the DH operations will take place. We
will omit the thorough explanation of the “psk” token since it is not relevant
for our study. Once all the tokens have been processed from a message pattern,
Noise sends the assembled message to the other party.

Here we concisely mention the outcome of processing the tokens (see Ap-

pendix A and [66]).

» "e': The sender generates a new ephemeral key pair (s, €pry) and
places the ephemeral public key e, as a part of the message to be sent
to the other party.

» "s': The sender loads his static key pair (s,u4, Spry) and appends his
static public key s, as part of the message to be sent to the other party.

e Yee!, “es!", “se', “ss': Eachofthese two characters describes
a DH operation between the initiator and the responder. The first charac-
ter corresponds to the initiator and the second character to the responder.
If the character is “e* the ephemeral key is used or a static key is used,

n_n

if the character is "s".

CHAPTER 3. NEBULA 37

Previously with the IN pattern, we identify the behavior of a noise protocol
with two characters. However, we need to specify the DH function, cipher and
hash function to completely qualify a noise protocol. We get the name of
the protocol by spacing four underscore-separated name sections. All Noise
protocols start with the ASCII string “Noise™.

For example, WireGuard uses the IK pattern in the following configura-
tions when no pre-shared key is in use and with pre-shared key respectively
[28]:

* “Noise_IK_25519_ChaChaPoly_ BLAKE2s™“

¢ "“NoisePSK_IK_ 25519_ChaChaPoly_BLAKE2s"

Another example is WhatsApp that uses a Noise Pipe compound proto-
col and through the runtime analysis tool Frida, the following protocols were
found [70, 71, 72]:

* “Noise_XX_25519_AESGCM_SHA256"
* "“Noise_IK_25519_AESGCM_SHAZ56"

e “Noise XXfallback_ 25519 AESGCM_SHA256"

Finally, Nebula uses the I X pattern with the option to choose the ChaCha20-
Poly1305 AEAD cipher by changing the configuration file [73].

e "“Noise_ IX_25519_ AESGCM_SHA256" (Default)
IX:
-> e, s

<- e, ee, se, s, es

* "Noise_IX_ 25519_ChaChaPoly_ SHA256"

3.6 Noise state machines

Noise uses a set of variables organized in three state machines to process the
tokens, apply the rules from the handshake pattern, and keep track of the DH
operations, the symmetric and session keys. Noise arranges these state ma-
chines in a hierarchy: The handshake state, the symmetric state, and the cipher
state as shown in Figure 3.3.

38 CHAPTER 3. NEBULA

4)

Handshake state

N
Symmetric state

[Cipher state
g

7

Figure 3.3: send.

3.6.1 Handshake state

Each party has a single handshake state that will be reset once they establish
the communication. The variables in this state correspond to the ephemeral
and static DH asymmetric keys. The handshake state keeps track of four public
and two private keys [68].

* e: The name e stands for ephemeral, and this variable holds the ephemeral
key pair internally. For readability, we denote the private and public
ephemeral keys by ¢, and e, respectively.

* s: The name s stands for static, and this variable holds the static key
pair internally. For readability, we denote the private and public static
keys by s, and s, respectively.

* re: The name re stands for remote ephemeral public key, this variable
holds the other party’s ephemeral public key.

* rs: The name rs stands for remote public static key, this variable holds
the other party’s static public key.

3.6.2 Symmetric state

During the handshake phase, each party has a single symmetric state that will
be reset once they establish the communication. The variables in this state are
h and ck [66]:

* h: Variable h holds the hash of the protocol name. For the IX pat-
tern used by Nebula, itis "Noise_IX_ 25519_AESGCM_SHA256".
Subsequently, with certain operations along with the handshake, the
variable h would hash these messages concatenated with the previous
values to guarantee that each party has undertaken the same steps.

CHAPTER 3. NEBULA 39

* ck: The variable ck stands for the chaining key, ck is a hash that takes
the initial value of h. As an input (salt) for the HKDF function [74],
it derives symmetric encryption keys. The variable ck will contain the
hashes of performed DH operations, and at the end of the handshake
through the HKDF function, it will be used to derive the encryption
keys for the secure transport of messages.

3.6.3 Cipher state

The variables in this state are k and n. During the handshake phase, there is
a single cipher state for each participant. Later, in the transport phase, each
participant has two cipher states: one to send encrypted messages and the other
to decrypt receiving messages [66, 68].

* k: The variable k stands for key and holds the cipher key with which
specific messages are encrypted during the handshake phase.

* n: The variable n stands for nonce but behaves like a counter. Noise uses
it for encrypting and decrypting static DH keys and payloads during the
handshake phase.

3.7 Functions

Below is the list of relevant functions used for processing the IX pattern. For
the complete list, refer to the specification [66].

— GEN_EPHEMEREAL KEY PAIR():
Generates the Diffie-Hellman key pair (€4, €pup)-
Officially in the specification, the function is called GENERATE_KEYPAIR (),
We rename it to GEN_EPHEMEREAI_KEY PAIR () for better read-
ability.

— DH(private_key, public_key):
This function returns the result of a Diffie-Hellman operation between
the private and public keys.

— ENCRYPT (key, nonce, associated_data, plaintext):

This function returns the encryption of the fourth parameter, plain-
text, using the given key, nonce, and associated data.

40 CHAPTER 3. NEBULA

— DECRYPT (key, nonce, associated_data, ciphertext):

This function returns the plaintext from the ciphertext using the given
key, nonce, and associated data.

— HKDF (chaining_key, input_key material):

This key derivation function yields two outputs using the chaining_key
as HKDF salt and the input_key_material. In Appendix A, this
function is represented by a sequence of HMAC-HASH operations; for
readability, we replace those operations with a single call of the HKDF
function.

3.8 Overview of handshake pattern IX

In this section, we apply the processing rules of the Noise framework found
in Appendix A for the pattern IX that Nebula employs. We aid the processing
of messages with a visual representation of the handshake, symmetric, and
cipher state machines. Finally, we conclude with a succinct representation of
the messages that are sent by each party.

The tokens and messages to process are the following:

IX:
-> e, s
<— e, ee, se, s, es

First, we initialize the protocol, setting to empty the four values of the hand-
shake state. The variable h from the symmetric state receives the hash value
of the full protocol name, and the chaining key takes that initial value. The
variable k from the cipher state receives an empty value and the nonce zero.
Algorithm 1 shows the initialization and Figure 3.4, the visual representation
of the state machines at this stage.

Note: Instead of overriding the values of the variables h, k and ck, we use
of a subscript index with h, k and ck to show side to side the current values

CHAPTER 3. NEBULA 41

of each party during the handshake.

Algorithm 1: Initialization of IX Pattern
Result: Set the hanshake, symmetric and cypher states to initial
values

// initialization, these values are set in both sides
1 message < "";
// handshake state
e+ J;
re <— J,;
S — I,
rs < J;
// symmetric state
6 hg < HASH("Noise IX 25519 AESGCM SHA256");

n A W N

7 Cko %ho;

// cipher state
8 k <+ O
9 n <+ 0;

Initiator Responder
Symmetric | Cypher Symmetric | Cypher

Handshake state state state Handshake state state state
e re s rs h ck k n e re s rs h ck k n
2| o |2 | o |he|he| @ © 2| o | @ | o |he|ho| @ | 0

Figure 3.4: State machines of IX pattern during initialization

After the initialization, the pattern processes the first message from the
initiator. The responder receives the ephemeral public key, the static public
key, and a payload. As mentioned previously, Noise allows sending application
data during the handshake phase. In the payload of this stage, Nebula sends
the certificate without encryption. It is worth recalling that the IX pattern does

42 CHAPTER 3. NEBULA

not encrypt the payload in the first message.

Algorithm 2: Initiator process “-> e, s”
Result: Send to the responder { e = ey, 5 = Spup, Payload }

// process e
1 e + GEN_EPHEMEREAL_KEY_PAIR() ; // Generates €pub eprv
2 message < message || eyup;
3 hl < HASH (ho || €pub);
// process s
4 s < LOAD_STATIC_KEYPAIR() ; // Load Nebula
certificates Spub, Spro
5 eNC_S < Spup;
6 message < message || enc_s;
7 hy <~ HASH(hy || enc_s);
// Sends the message
8 ciphertext «+— payload;
9 message < message || ciphertext;
10 hy <— HASH (hs || ciphertext) ;
11 SEND (message) ; // €= epup, = Spup, payload

Algorithm 2 shows the steps of processing the message "-> e, s", Al-
gorithm Algorithm 3 shows the processing of the same message from the re-
ceiving side. Finally Figure 3.5 shows the visual representation of the state
machines at this stage.

Algorithm 3: Responder process “-> e, s”
Result: Recieve from the initiator { re = epup, s = Spup, payload }

// process e
1 (re, message) < split_first_component (message);
2 hy < HASH (hg || re);
// process s
3 (enc_rs, message) «
split_first_component (message);
4 TS <+ €enc_rs;
5 ho <~ HASH (hy || enc_rs);
// process payload
6 payload + message;
7 hsy <~ HASH (hs || message) ;

The responder now processes and prepares the message “<—- e, ee,
se, s, es” asshownin Algorithm 4. The responder generates the ephemeral
keys and performs the DH operations with the keys received from the initiator.

CHAPTER 3. NEBULA 43

Initiator Responder
Handshake state SyZthzic C;[lh:er Handshake state SYZT::;R C;par::eer
e re s rs h ck k n e re s rs h ck k]
2| o |2 | @ |h|ho| @ | 0 2| @ |2 |© |he|he @ | @
e s hy re rs | hy
h; h;
hs h;

Figure 3.5: State machines of IX pattern after processing "-> e, s"

The responder sends the initiator the public ephemeral and the static keys and
a payload, it then applies the HKDF function three times to get cks and ks.
Algorithm 5 shows the steps of processing the message “<- e, ee,
se, s, es” that are received from the responder. Figure 3.6 shows the
state machines holding all the last values of the IX pattern. To this point, the
handshake, symmetric, and cipher states hold the same values from each party.
Although there is a hg value in the symmetric state of the initiator, /g is not in

44

CHAPTER 3. NEBULA

use and is just part of the algorithm generator from the Noise framework.

Algorithm S: Initiator process “<- e, ee, se, s, es”

13

14
15
16

17
18
19
20
21

22
23
24

Result: Recieve from the responder {re = ey, rs = Ej,(n =
0, ha, Spup), payload = Ey,(n = 0, hs, payload)}

// process e

(re, message) < split_first_component (message);

hy <~ HASH (hs || re) ;

// process ee

private_key < e,,,;

public_key « re;

dh_result < DH (private_key, public_key) ;

cky, ki < HKDF (cko, dh_result) ;

n < 0;

// process se

private_key < s,,.,;

public_key <« re;

dh_result + DH (private_key, public_key) ;

cks, ko < HKDF (cky, dh_result) ;

n<0;

// process s

(enc_rs, message) +
split_first_component (message);

rs < DECRYPT (ko, n, hy, ENC_IS);

n<+<n+1;

hs < HASH (hy || enc_rs);

// process es

private_key < e,.;

public_key < rs;

dh_result < DH (private_key, public_key) ;

cks, ks < HKDF (cky, dh_result) ;

n <+ 0;

// process payload

payload <— DECRYPT (k3, n, h;, message);

n<n+1;

he < HASH (h; || message) ;

After processing the two initial messages from the handshake, there is one

last step to be performed by the participants that comprises deriving the keys
to secure the channel. Algorithm 6 shows this last step by applying HKDF

CHAPTER 3. NEBULA 45

Initiator Responder
Handshake state SyZthzic c;'lh: er Handshake state SYZT::;R C;par::eer
e re s rs h ck k n e re s rs h ck k]
2| o |2 | @ |h|ho| @ | 0 2| @ |2 |© |he|he @ | @
e |re| s |rs|hy|cki| ky | @ e |re| s |rs|hy |cky| kg | @
h, (ckx | ky | © h, (ckx | kx| 0
hs |cks| ks | 1 hs |cks| kaz | 1
h, 0 hy o
hg 1 hg 1

Figure 3.6: State machines of IX pattern after processing “<—- e, ee, se,
s, es”

on the last value of ck that is ck3 with an empty string as the key material.
As a result, we get k1 and k2 keys and the nonces nl and n2. The initiator
will use k1 as a key to encrypt messages through the channel, and k2 will
be the responder’s key to encrypt messages through the channel with their
respective nonces. Both parties compute these two keys so they can encrypt
and decrypt messages. In addition, both parties discard all other values from
the state machines [68].

Algorithm 6: Key derivation
Result: Obtain the keys k1 and k2 for the secure communication

// Key derivation
1 k1, k2 «+ HKDF (cks, "");
2 nl « 0;
3 N2+ 0;

Figure 3.7 shows a succinct representation of the Noise IX pattern used
in Nebula with Alice and Bob’s illustration. As components of the handshake
messages, we can see the ephemeral keys and how the static keys are in transfer
along with the payload. Hash equality implies key equality, and we can observe
the hashes h4 and hj; for that purpose.

46 CHAPTER 3. NEBULA

€ = €pub, S = Spup, payload

€= epuba S = Ekz(n - 07 h47 Spub),
payload = Ey,(n =0, hs, payload)

Secure channel

\

Alice: Initiator Bob: Responder

Secure channel

Figure 3.7: Outline of the Noise IX pattern use in Nebula

CHAPTER 3. NEBULA

47

Algorithm 4: Responder process “<- e, ee, se, s, es”

®w N nn A

10
11
12
13

14

15
16
17
18

19
20
21
22
23

24
25
26
27

Result: Send to the initiator { e = e,y, s = Ej,(n =
0, by, Spup), payload = Ey,(n = 0, hs, payload) }

// process e

e < GEN_EPHEMEREAL_KEY_PAIR() ; // Generates epub, €pro

message < message || eu ;

hy <= HASH (hs || €pup) ;

// process ee

private_key < e, ;

public_key + re;

dh_result + DH (private_key, public_key) ;

cky, ki < HKDF (cky, dh_result) ;

n+0;

// process se

private_key < e, ;

public_key < rs;

dh_result < DH (private_key, public_key) ;

cky, ko < HKDF (cky, dh_result) ;

n+<0;

// process s

s < LOAD_STATIC_KEYPAIR() ;
certificates Spub, Spro

eNC_S <~ ENCRYPT (k2, n, ha, Spup) 3

n<n+1;

message « message || enc_s;

hs < HASH (hy || enc_s) ;

// process es

private_key < s, ;

public_key « re;

dh_result « DH (private_key, public_key) ;

cks, ks < HKDF (cko, dh_result) ;

n<0;

// Sends the message

ciphertext «+ ENCRYPT (k3, n, hs, payload) ;

n<n+1;
message « message || ciphertext;
SEND (message) ;

// Load Nebula

/! e=epup, = Ei,(n=0,hy,spu), payload = Ey,(n = 0, hs, payload)

Chapter 4

Experiment

This chapter summarizes the setup of a testbed to carry experiments for the
evaluation. We illustrate the network topology as a foundation for establishing
secure connections with Nebula and IPsec. Then, we detail the setup of end-
points with Nebula and IPsec to finally describe the conducted experiments.

4.1 Experiment testbed setup

To test the capabilities of Nebula and IPsec, we need hosts interconnected
belonging to unique network addresses. We set up a testbed with virtual ma-
chines using VirtualBox as hypervisor and Vagrant as a tool for managing and
building these virtual environments. Vagrant uses boxes, which is a package
format to distribute Vagrant environments in any platform in which Vagrant
runs. These boxes from Vagrant are a tailored virtual machine images for a
specific hypervisor that can be downloaded from the publicly available cata-
log online.

To provide essential tools common to all hosts for the experiment, we cre-
ated two custom boxes based on “bento/ubuntu-16.04" and ‘“bento/ubuntu-
18.04” boxes for Nebula and IPsec, respectively. The network component of
the virtual machines is the most crucial aspect of the experiment since we
needed to have as similar behavior as possible to physical network interface
cards. VirtualBox, as the hypervisor, provides several different networking
operation modes for the network adapter. When creating virtual machines, Va-
grant, by default, sets the network adapters to operate in the host-only mode.
We instead specify them to run in the internal networking mode.

To define the membership of a network, VirtualBox would typically use
IP address ranges. The Oracle VM VirtualBox driver connects the hosts by

48

CHAPTER 4. EXPERIMENT 49

the internal network ID to a single network switch despite them belonging to
different IP address ranges, i.e., connecting by the data link layer. To overcome
the problem that all virtual machines generated by Vagrant belong to the same
virtual L2 network, we define our networks by designating specific internal
network IDs to the adapters. As a result, only the hosts with the same internal
network ID are tied by the data link layer. This allows us to reach other hosts
in a different L2 network by the conventional routing in the network layer [75].

4.1.1 Architecture

Figure 4.1 shows the testbed architecture with the hosts and routers. The
testbed comprises two sites: Site A and Site B, resembling the setting from
the problem statement section. The sites have Gateway A and Gateway B, re-
spectively, configured with a source NAT for hosts of the internal network to
reach exterior networks. Listing 4.1 shows the iptables source NAT instruction
on the external interface eth2 from Gateways A and B.
Source NAT for Gateway A
iptables --table nat --append POSTROUTING \
—--out-interface eth2 -j SNAT \
—-—to-source 172.18.18.18
Source NAT for Gateway B
iptables --table nat --append POSTROUTING \

—--out-interface eth2 -j SNAT \
-—to-source 172.19.19.19

Listing 4.1: Source NAT for Gateway A and B

Another VM is acting as a router between the site gateways. It simulates
the functions of the Internet. On this simulated Internet, we have a host called
lighthousel with the network range 172.20.1.100/16, which is reachable
by both sites and acts as a service in the cloud. The hosts, gateways, and
the router are configured with static routes to enable the connectivity in the
scheme.

Site A has the network address range 10.40.40.0/24. Site B has the same
network addresses to test NAT traversal capabilities. In site A, we have a host
named node—al with the IP network 10.40.40.5/24, and in site B, we have a
host named node-b1 with the IP network 10.40.40.7/24. These hosts cannot
interact with each other because of the NAT in place at both sites. Hosts from
both sites A and B can reach 1ighthousel without any inconvenience.

Observation: The colored rectangles in Figure 4.1 illustrate the different
networks. Therefore, the words site—-a, site-b, router—-network-—
a, router—-network-band fake-internet correspond to the internal

50

CHAPTER 4. EXPERIMENT

nebula IP:
192.200.1.100:4242 _o™

Internal Network
(Switch behavior):
fake-internet I|ghthcuse1

172.20.1.100

nebula IP:

nebula IP: X SITEB
SITE A 495 2001 55555 Inl1::e||'(net 192.200.1.7:7777 e
node-pi:
T I (Fake) :-]I 10.40.40.7
10.40.40.5 — =

=
-

Iu

Internal Network Internal Network

Switch behavior): 40.40. (Switch behavior):
. c5|t:-aaw°r] el 1040 4& site-b
@ Gateway A Gateway B u
172.18.18.18 17219.1919

Internal Network
{Switch behavior):

router-network-a

172.18.1.10

172.20.1.10

172.19.1.10

Internal Network
(Switch behavior):
router-network-b

@

Figure 4.1: Testbed network

network ID from the Oracle VM VirtualBox driver that enables the desired
switch behavior.

4.1.2 Nebula setup

In this setup, the nodes node-al, node-bl, and 1ighthousel are run-
ning Nebula. First, we create the certification authority (CA) with the provided
binary nebula-cert to later generate the pair of nebula certificate and pri-
vate key for the nodes, as shown in Listing 4.2.

./nebula-cert ca -name "Andromeda Galaxy, Inc'"
./nebula-cert sign -name "lighthousel" \

-ip "192.200.1.100/24"
./nebula-cert sign -name "node-al" \

—-ip "192.200.1.5/24"
./nebula-cert sign -name "node-bl" \

-ip "192.200.1.7/24"

Listing 4.2: Generating certificates for Nebula

We place these certificates in the nodes. Figure 4.1 shows the Nebula IP
addresses in blue with the corresponding port in red. We list the resulting

10

CHAPTER 4. EXPERIMENT 51

setting below:

* lighthousel:
Real IP: 172.20.1.100, Nebula IP: 192.200.1.100, Nebula Port: 4242

e node-al:

Real IP: 10.40.40.5, Nebula IP: 192.200.1.5, Nebula Port: 5555

* node-bl:
Real IP: 10.40.40.7, Nebula IP: 192.200.1.7, Nebula Port: 7777

The filtering rules for the firewall in the Nebula config.yml file are
open to any host, protocol, and port. Listing 4.3 shows an excerpt of the con-
figuration; for the complete configuration, see Appendix B.

outbound:
- port: any
proto: any
host: any

inbound:
- port: any
proto: any
host: any

Listing 4.3: Filtering rules for Nebula

One observation is that Nebula has complete control over the virtual net-
work interface that creates. The default configuration file defines the maxi-
mum transfer unit (MTU) 1300 and the transmission queue length (txqueue-
len) 500. To make it comparable to an IPsec setup, we set the MTU to 1500 and
the txqueuelen to 1000, which are the default values assigned by a GNU/Linux
OS.

4.1.3 IPsec setup

In this setup, we configured the nodes node-al and 1ighthousel with
an IPsec VPN tunnel. To make it comparable to the Nebula setup, we will
use X.509 certificates. Similarly, we need to create a certification authority
(CA) and the certificates for the nodes. Listing 4.4 shows the commands for
generating these credentials in IPsec setup.

52 CHAPTER 4. EXPERIMENT

I # Create the CA root key

» ipsec pki --gen --type rsa —--size 4096 \

3 -—outform pem > /vagrant/config/pki/
server —root —key.pem

4

s # Create the self-signed CA certificate

¢ ipsec pki —--self --ca —--lifetime 3650 \
7 —-in /vagrant/config/pki/server -root-key.pem \
g8 ——type rsa \

9 ——-dn "C=FI, O=VPN Server, CN=VPN Server Root CA" \
0 ——-outform pem > /vagrant/config/pki/server-root-ca
.pem

2 # We create the key for the lighthousel

3 ipsec pki --gen --type rsa --size 4096 \

14 -—-outform pem > /vagrant/config/pki/
lighthousel —key.pem

16 # We create the certificate for the lighthousel

17 ipsec pki --issue --in /vagrant/config/pki/
lighthousel —key.pem \

s —-—type rsa \

9 ——lifetime 1825 \

0 ——-cacert /vagrant/config/pki/server -root-ca.pem \

21 ——-cakey /vagrant/config/pki/server -root-key.pem \

» ——-dn "C=FI, O=VPN lighthousel, CN=172.20.1.100" \

3 —-san 172.20.1.100 \

2 —-—-flag serverAuth --flag ikeIntermediate \

»5 ——outform pem > /vagrant/config/pki/lighthousel -

cert .pem

27 # We create the key for the node-al

% ipsec pki --gen —--type rsa --size 4096

29 --outform pem > /vagrant/config/pki/node-
al-key.pem

31 # We create the certificate for the node-al

» ipsec pki —--issue --in /vagrant/config/pki/node-al-
key .pem \

3 ——-type rsa \

4 ——lifetime 1825 \

35, ——cacert /vagrant/config/pki/server -root-ca.pem \

3 ——cakey /vagrant/config/pki/server-root-key.pem \

37 ——-dn "C=FI, O=VPN node-al, CN=10.40.40.5" \

3 —-san 10.40.40.5 \

39 —-—-flag serverAuth --flag ikeIntermediate \

CHAPTER 4. EXPERIMENT 53

w —-—-outform pem > /vagrant/config/pki/node-al-cert.
pem

Listing 4.4: Generating certificates for IPsec

To manage and configure the hosts, we use the open-source IPsec imple-
mentation strongSwan. For IKEv2 and ESP, we use the following DH group,
cipher and Hash function from the IANA list of algorithms registered for
IKEv2 [76, 77]:

* DH: Elliptic Curve 25519
* Cipher: 256 bit AES-GCM with 128-bit ICV
* Hash: HMAC-SHA-256 Truncated length 128

In this setup of [Psec VPN, 1ighthousel acts as a VPN server and is
reachable from host node-al behind the NAT. For that purpose, we need
to apply the following masquerade configuration in 1ighthousel to enable
communication with node—a1l, which is a member of the network 10.40.40.0/24.
Listing 4.5 shows an excerpt of the setting, for the complete configuration in
node-al and 1ighthousel, see Appendix C.

iptables -t nat -A POSTROUTING -s 10.40.40.0/24 \

-0 ethl \
1 -m policy —--dir out --pol ipsec -]
ACCEPT
iptables -t nat -A POSTROUTING -s 10.40.40.0/24 \
6 -0 ethl \

—-Jj MASQUERADE

Listing 4.5: Enabling IPsec connectivity towards node-al

4.1.4 Throughput experiment

To get a measurement of the performance penalty when using IPsec and Neb-
ula, we use the tool iperf3. The iperf3 tool allows active measurements of the
maximum achievable bandwidth on IP networks [78].

Onthe 1ighthousel, we runiperf3 as a server, and we display the mea-
surement in megabits/sec with the following command:

I iperf3 -s —-f m

54 CHAPTER 4. EXPERIMENT

The actual measurement takes place on the client node—-al. We run the
experiment five times for 60 seconds and calculate the throughput as an average
of the measurements. When measuring the plain TCP/IP link of the testbed,
we use the IP 172.20.1.100. We use the same address after placing the IPsec
SA, and for Nebula, we use the IP address 192.200.1.100. We display the
measurement in megabits/sec with the following commands:

iperf3 -t 60 -c¢ 172.20.1.100 -f m

> iperf3 -t 60 -c 192.200.1.100 -f m

1

Table 4.1 shows the measured throughput values.

Protocol | Throughput
TCP/IP 452 Mbits/sec
IPsec 360 Mbits/sec
Nebula 122 Mbits/sec

Table 4.1: Throughput measurements of plain TCP/IP, IPsec and Nebula

Further discussion takes place in Chapter 5.4.

4.1.5 Latency experiment

In this experiment, we analyze how Nebula and IPsec perform. We transfer
files of different sizes with IPsec, Nebula, and plain TCP/IP, and we record the
latency of the operation.

First, we generate six files with the following sizes in megabytes: 1, 10,
50, 100, 500, and 1000. We use random bytes as the content of the files with
the following commands.

We generate files with random content.

head -c¢ 1M < /dev/urandom > /files/01
_origin_file_0001M.dat
head -c 10M < /dev/urandom > /files/02

_origin_file_0010M.dat
head -c 50M < /dev/urandom > /files/03
_origin_file_ _0050M.dat
head -c¢ 100M < /dev/urandom > /files/04
_origin_file_0100M.dat
head -c 500M < /dev/urandom > /files/05
_origin_file_ _0500M.dat
head -c¢ 1000M < /dev/urandom > /files/06
_origin_file_1000M.dat

1

CHAPTER 4. EXPERIMENT 55

For each file size, we run the experiment 30 times, and we calculate the
mean and the standard deviation. To measure the time of the operation, we use
the command-line tool t ime from the GNU/Linux OS. To carry out transfer-
ring files, we use the command-line networking tools nc (netcat) and
scp. We record each operation in a CSV file with the following header:
“seconds, size, filename, iteration”.

The following lines show how the recording of the action takes place when
using netcat, scp and rsync, respectively.

{ /usr/bin/time \
—-f "%e; S${size_of_ file}; S${name_of_file};
Siteration" \
nc -g 0 $destination 1234 < /files/${
name_of_files} ; } \
2>> /results/result_${size_of_file}.csv

{ /usr/bin/time \

Q

-f "%e; S${size_of_file}; ${name_of_file};
Siteration" \

scp —-q /files/${name_of_file}
vagrant@S$destination:/files/ ; } \

2>> /results/result_${size_of_file}.csv

{ /usr/bin/time \

[)

-f "%e; ${size_of_file}; ${name_of_ file};
Siteration" \

rsync -W /files/${name_of_file} \
rsync://Sdestination:12000/files/ ; } \
2>> /results/result_S$S{size_of file}.csv

Using netcat: On the other endpoint, we need to open the port to receive
incoming traffic. After each successful transfer, the netcat tool terminates the
session. To keep the experiment running, we iterate 180 times the following
instruction.
nc -1 -p 1234 > /tmp/out.file

Using scp: To avoid prompting the password on each transfer, we first
generate RSA keys and then install the public key on the destination node, i.e.,
lighthousel.

Using rsync: We use rsync with the parameter -W to transfer the whole file
and avoid the delta encoding. Also, we run rsync in daemon mode to bypass
authentication and encryption.

Figure 4.2 shows the measured latency values, along with the standard
deviation for each measured value; the first two plots represent the seconds of
the Y-axis on a logarithm scale. Further discussion takes place in Chapter 5.4.

56

Time (seconds) Time (seconds)

Time (seconds)

CHAPTER 4. EXPERIMENT

Plain rsync M Plain scp M Plainnc IPsec rsync M IPsecscp
B Psecnc Nebularsync B Nebula scp M nNebulanc
Transferring 1 Megabyte Transferring 10 Megabytes
10 = 10 =

N T - N)
% % %
% £ 5 5 S, q
%, %,, %, o % % é&é “%

T % S Y. 9,

3L (5 L. (a] #

0 S, Y %@% D
(4

Figure 4.2: Latency experiment when transferring files.

Chapter 5

Evaluation results

This chapter analyzes the results of our evaluation of Nebula. We provide dis-
cussion and conclusions on the four aspects of assessment: reliability, security,
manageability, and performance.

5.1 Reliability

In this section, we discuss the reliability of Nebula.

By design, Nebula only works in IPv4 networks. If there is a need to deploy
Nebula in an IPv6 infrastructure, that would not be possible. By definition, in
a mesh network, the nodes act as hosts and routers. However, Nebula does not
do routing; the lighthouse is mainly for the discovery of nodes. If a link in the
underlying network is down, there is no alternative route. The claim of host-to-
host connectivity is one of Nebula’s key features. Hence, NAT traversal must
be taken into consideration in Nebula’s design. In the section below, we detail
our findings on how Nebula does not guarantee connectivity when nodes are
behind NATs.

5.1.1 NAT traversal

The current version of Nebula (v1.2.0) applies only one (or a single) technique,
called UDP hole punching. Nebula connects to hosts that are in the same net-
work; however, connections are not guaranteed when hosts are behind NATSs.

Unfortunately, we should treat NAT boxes and devices as black boxes,
since their behavior might be unpredictable. This happens since some legacy
NATs are still operational and do not follow current best practices.

57

58 CHAPTER 5. EVALUATION RESULTS

5.1.2 Case of failure

In our experiment, we examine a failing connection attempt. As shown in
our testbed design (see Figure 4.1), both gateways A and B have simple NATSs
in operation. We initiate the communication between node-al and node-b1.
For node-al to start a secure connection, it is sufficient to send traffic to-
wards node-bl. Here, from node-al, we run the command: ping —-c¢ 5
192.200.1.7 to reach node-bl, and the operation yields 100% of packet
loss.

With no additional modification, it is not possible to achieve host-to-host
connectivity in the described setup.

After this attempt, we retrieve the tracked connections from the Linux ker-
nel with the conntrack tool on both gateway A and B, as shown in Ta-
ble 5.1. UDP hole punching requires predictable mapping from internal to
external source ports to achieve a successful connection. Table 5.1 shows that
the NAT on Gateway B assigned the port 1024 instead of 7777.

Translation table in Gateway A

SRC DST SRC DST

SRC IP PORT DST IP PORT | < SRCIP PORT DST IP PORT
10.40.40.5 5555 172.20.1.100 4242 172.18.18.18 5555 172.20.1.100 4242
10.40.40.5 5555 172.19.19.19 7777 172.18.18.18 5555 172.19.19.19 7777

Translation table in Gateway B

SRC DST SRC DST

SRCIP PORT DST IP PORT | < SRCIP PORT DST IP PORT
10.40.40.7 7777 172.20.1.100 4242 172.19.19.19 7777 172.20.1.100 4242
10.40.40.7 7777 172.18.18.18 5555 172.18.18.18 1024 172.18.18.18 5555

Table 5.1: Translation tables on Gateway A and B

To analyze this undesired behavior, we rely on the TRACE target from
iptables. On gateway B, we apply iptables policies for tracing incoming and
outgoing packets to the gateway, as shown in Listing 5.1.
iptables -t raw -I PREROUTING -s 172.18.18.18 -7

TRACE
iptables -t raw -I PREROUTING -s 172.20.1.100 -3
TRACE

iptables -t raw -I OUTPUT -d 172.18.18.18 -j TRACE
iptables -t raw -I OUTPUT -d 172.20.1.100 -3j TRACE

Listing 5.1: Tracing policies for packets

Here we describe how Nebula establishes communication between nodes.
First, node-al queries the lighthouse for the external IP address and port of

CHAPTER 5. EVALUATION RESULTS 59

node-b1. The lighthouse responds to node-al with the requested information
but also notifies node-b1 that node-al is trying to connect. On the notification
to node-b1, the lighthouse provides the external IP address and port of node-
al, so that node-b1 can punch a hole in the NAT of Gateway B.

According to the operation of Netfilter [79] (see Appendix D) and by exam-
ining the dmesg tool logs, we observe that the incoming packet went through
the following sequence of tables and chain pair: raw:PREROUTING, man—
gle:PREROUTING, nat :PREROUTING,mangle: INPUT, filter: INPUT.
Finally, the gateway returns an ICMP error type 3 (Destination unreachable)
code 3 (Port unreachable error) on the table and chair pair raw : OUTPUT [80].

As aresult, we can conclude that the packet from node-al arrives on gate-
way B before node-b1 manages to punch a hole in the NAT. The packet from
node-al remains in the connection tracking of Gateway B and uses the port
7777. By the time node-b1 punches the hole, the NAT can not preserve the
port in the translation table and assigns the port 1024.

5.1.3 Workarounds

Simultaneous connection: After a few trials, we managed to achieve a suc-
cessful connection without modifying the setup. This was done by starting the
traffic from each node almost at the same time. From node-al we do ping
-c 5 192.200.1.7 and from node-bl: ping -c¢ 5 192.200.1.5.
Once the connection is established, Nebula sends keep-alive packets when
both nodes stop generating traffic to preserve the punched hole.

Filtering new connections: For experimental purposes, Listing 5.2 shows
an iptables rule to drop new UDP connections on port 7777 for inbound pack-
ets. According to this policy, we resemble an endpoint-independent filtering
behavior as defined in RFC 4787 [15]. Attempting the connection again from
node-al to node-b1 is successful without problems.

iptables —-I INPUT -p udp --dport 7777 \
-m state —--state NEW -3j DROP

Listing 5.2: Filter new UDP connections on port 7777

Synchronized connection: Another approach is changing the current source
code of Nebula with a synchronized attempt of connection. First, synchroniz-
ing the clocks from the nodes, then executing the normal flow while ensuring
that the hole punch on the destination is accomplished before the packets of
the originating node arrive. This is not an optimal solution since NATs might
randomize ports and even use IPs from a pool of addresses. In this case, traf-

60 CHAPTER 5. EVALUATION RESULTS

fic must be relayed as specified in the TURN and ICE standards, which is not
currently implemented in Nebula.

5.1.4 Conclusion on reliability

In summary, designing a reliable mesh network with Nebula is not possible be-
cause it cannot guarantee a successful NAT traversal solution. Consequently,
Nebula is only recommended in cases where full control of the network and
devices can be achieved, in addition to full awareness of the network topology,
similar to a data center setting.

5.2 Security

Types of credentials and credential provisioning: Nebula bases the authen-
tication of nodes entirely on custom certificates, which are different from the
X.509 standard. Nebula encodes into the certificates custom attributes, such
as IPs, subnets, and groups. Custom certificates are used to ensure a compact
structure that is suitable for restrictive networks with very low MTU. To cre-
ate such certificates and CAs, Nebula provides the nebula-cert tool [81].
Both the CA created by the tool, and the certificates signed by the CA are as-
signed a validity period, which by default is 365 days. After the expiration,
the CA cannot issue or verify certificates.

Identifier spaces and managing identities: The certificates identify Neb-
ula nodes regardless of name or FQDN. Nebula requires the IP address and the
associated (overlay) subnet in which that node would operate to be specified
in the same certificate. It is also possible to blacklist any node to prevent it
from interacting with other nodes, which can be done manually or using con-
figuration management tools. The PKI section of the configuration files allows
multiple CAs in place, but only one active certificate identifying the node. The
possibility of having multiple CAs is useful for rotating expired CAs or refresh-
ing the entire network with new certificates for nodes with already trusted CAs
in place. This requires signing new certificates with the new CA, deploying
the new certificates into the nodes with an automation tool, and removing the
expired CA.

Cryptographic algorithms: One of the major advantages of Nebula when
using the Noise framework is the absence of negotiation of security proto-
cols. IKE and IPsec both require specifying the security protocol on both
endpoints to establish the communication. By default, Nebula uses the elliptic

CHAPTER 5. EVALUATION RESULTS 61

curve 25519 to perform the DH exchange, SHA-256 for hashing, and the de-
fault cipher is AES256-GCM AEAD with the option by the configuration file
to change it to the ChaCha20-Poly1305 AEAD cipher. This pre-selection of
security algorithms favors non-expert users, in opposition to IPsec and IKE,
which require knowledge of cryptography to avoid security issues. Regard-
ing the chosen cryptographic algorithms, the elliptic curve 25519 is one of
the fastest existing curves for DH operations [82]. Both the AES-GCM cipher
function and the SHA-256 hash function are recommended and standardized
by NIST [83, 84].

Implementation quality: Nebula is developed in the Go programming
language. After examining the source code of the project, we find out that
the detailed documentation is missing for various sections of the source code.
Also, external documentation does not detail most of the design choices. Only
after perusing the source code, we manage to find out details regarding the
default DH group, cipher suites, hash functions or the custom certificates used
by Nebula.

The absence of detailed documentation complicates the auditing process
for external professionals. Better documentation can ease the steep learning
curve and facilitate collaboration from the community. The layout of direc-
tories within a Go project has different purposes, and their directives are en-
forced by the compiler. For example, the “/internal” directory forces the con-
tent not to be imported into another project. Similarly, the “pkg” directory
explicitly communicates that the code within is safe to re-utilize in another
project. This makes it particularly convenient to integrate the verification and
signing of certificates into another tool, if the need arises. Even though the
Nebula project layout structures the code in some directories, it can be im-
proved following best practices [85]. Undoubtedly, structuring the project
would require some refactoring and re-organization of the code.

5.2.1 Conclusions on security

In summary, Nebula provides certificate-based authentication, which grants a
favorable balance between manageability and security for unattended server-
to-server communication. However, it is the responsibility of the administrator
to follow the best practices of certificate lifecycle management. IPsec provides
various mechanisms for authentication, including certificates. If certificates
are used for authentication then, IPsec is comparable to Nebula.

62 CHAPTER 5. EVALUATION RESULTS

5.3 Manageability

Our main requirement is to extend a local network to a geographically distant
location. Currently, an IPsec VPN connection is used to achieve this goal,
which is inherently a site-to-site solution. On the other hand, Nebula is a host-
to-host solution, or more precisely, a server-to-server solution. Hence, Nebula
attempts to solve the problem with a different paradigm, which is creating an
overlay mesh network between the hosts.

Scalability: The significant advantage of Nebula is the cloud-friendly fea-
tures which IPsec does not provide.

Each node is loosely coupled in the nebula architecture since it only reports
to and queries one or more lighthouse(s) to reach other nodes. New nodes
can be deployed independently without affecting the entire overlay network.
Moreover, nodes and lighthouses do not require any change to enable a new
participant. This property makes Nebula scalable to a large number of nodes.

IPsec needs to maintain security policies between the sites explicitly, even
if deployed with certificates. Adding a new site to the scheme requires apply-
ing changes to security policies of each site to enable the extension of the local
network with IPsec VPN. On the other hand, secure connections in Nebula rely
entirely on the session keys derived from the certificates and the handshake.

Cross cloud provider: This loosely coupled property of a Nebula node
also offers mobility. Hence, one can migrate a part of the service to another
cloud provider or region without compromising the security setup. The migra-
tion is done without applying any modifications to the node’s certificate when
Nebula is deployed as a sidecar for a microservice.

Access control: Nebula ensures access control through security groups
that are implemented as a built-in firewall. The syntax for defining group mem-
berships is similar to other cloud solutions, such as Amazon Elastic Compute
Cloud (EC2) [86]. When creating certificates, it is possible to specify mem-
bership in groups as attributes to filter them with the firewall. For example,
the membership of the group “webserver” can be allowed to communicate with
the group “database” without the need to involve IP addresses or host names.

Besides filtering, groups can work as metadata for provisioning and con-
figuration management tools such as chef, for example, associating a chef role
with a Nebula group [87].

Logging and monitoring: Nebula has built-in support for monitoring
tools, including Prometheus and Graphite. These tools are crucial for visu-
alizing time-series data, monitoring events, alerts, and performance. While a
Nebula node is operating, these monitoring tools collect and visualize data in

CHAPTER 5. EVALUATION RESULTS 63

real-time through their interfaces.

Testing: Testing is a crucial phase of the software development cycle to
guarantee a production-ready solution. Even though it is impractical to repli-
cate a network topology for testing purposes, Nebula makes it possible to test
filtering rules on singles nodes before expanding over the complete overlay
network.

5.3.1 Conclusion on manageability

In summary, Nebula, is more than a conventional VPN with cloud-ready fea-
tures since it is scalable and allows automation in the deployment. The most
significant advantage of Nebula over [Psec is the simplicity of the administra-
tion of nodes.

5.4 Performance

In this section, we discuss the performance of Nebula concerning the research
question of the project in terms of throughput and latency.

5.4.1 Throughput

Tables 4.1 and 5.2 show the performance proportions in percentages to il-
lustrate the penalty for each communication channel. Compared with plain
TCP/IP transfer, we can observe that transferring files is 20.35% slower when
using I[Psec. Similarly, if we compare Nebula with the other technologies, we
find that it is 73.01% slower than the plain TCP/IP and 66.11% slower than
IPsec.

TCP/IP | IPsec | Nebula
TCP/IP | 100.00 % -20.35% -73.01 %
IPsec | -20.35% 100.00 % -66.11 %
Nebula | -73.01 % -66.11 % 100.00 %

Table 5.2: Comparison of performance between plain TCP/IP, IPsec and Neb-
ula.

This performance penalty occurs since encrypting and decrypting stream
of bytes causes an additional overhead in the process of transferring files.

64 CHAPTER 5. EVALUATION RESULTS

However, there is a significant gap in performance between IPsec and Neb-
ula. Nebula runs entirely in the user space of the OS. In consequence, cryp-
tographic operations take place in the user space. Doing system calls like I/O
operations for accessing the network device causes context switching between
user mode and supervisor mode, which is a significant reason behind the per-
formance penalty [88].

In contrast, IPsec performs function calls directly from the supervisor mode
when applying cryptographic operations and accessing the network devices,
without context switching. The most significant advantage of IPsec is operat-
ing in the kernel space. As a result, IPsec is faster but less portable, whereas
Nebula provides convenient portability for being a software application but
with slower performance.

5.4.2 Latency

Based on the latency experiment shown in Figure 4.2, we briefly describe the
tools used to transfer files. The SCP tool intrinsically creates a secure channel
for transferring files. We included SCP in the experiment as a reference since
SCP is useful for file transfer; however, it does not support server-to-server
schemes. Besides, Netcat transfers a stream of bytes with no optimization of
a specialized tool for transferring files when placed in both endpoints. There-
fore, most of the time is the slowest tool on the chart. Furthermore, Rsync is
a tool to synchronize files over the network; nevertheless, it can be tweaked to
copy entire files to a destination. Consequently, we observe the following:

* Observation 1: When transferring over plain TCP/IP, Rsync is consis-
tently faster than the other methods. Naturally, SCP has a higher latency
because of the overhead caused by encryption, and it is observable from
the charts. As for Netcat, it is the slowest method since it is not a spe-
cialized tool for transferring files. It does not support compression like
SCP, and we suspect that it may not make maximal use of the TCP con-
gestion window. In summary, we can rank these tools in terms of speed
when transferring in plain TCP/IP as follows: Rsync, SCP, then Netcat.

* Observation 2: When transferring over IPsec, Rsync is drastically slower
for files smaller than 100 megabytes, but is faster otherwise, as shown
in the charts. Fragmentation and maximum transmission unit (MTU)
size can be the technical reasons that play a role in this behavior. We
can observe how Netcat achieves lower latency when sent over IPsec
and UDP. Again, we hypothesize that the cause may be interaction with

CHAPTER 5. EVALUATION RESULTS 65

TCP congestion control. Rsync over IPsec has high latency, followed by
SCP for files under 500 megabytes, whereas Netcat has higher latency
for files over 500 megabytes.

* Observation 3: When transferring over Nebula, the highest latency
is achieved by Netcat, followed by Rsync, and SCP for files over 10
megabytes. This performance remains constant except for files under 1
megabyte, in which the latency ranking is inverted to the order of SCP,
Rsync, and then Netcat. As shown in the chart, Nebula is expected to
have the slowest transmission since it is a software application running
in the user space in contrast with IPsec running in the kernel space.

* Observation 4: When inspecting the standard deviation for each bar in
the chart, we can witness that, for SCP, it remains constant regardless
of the secure channel in use. On the other hand, the variation of latency
with the Netcat tool under the tunneled IPsec channel is smaller than
that of the plain TCP/IP transmission, which again may depend on the
tunneling of IPsec over UDP. Most of the time Nebula presents more
variation than IPsec for files lower than 500 megabytes.

* Observation 5: When examining the different file sizes from the exper-
iment, we can note that Nebula remains around the same threshold of
1 second when transferring files up to 10 megabytes compared to IPsec
and plain TCP/IP. However, for bigger files, Nebula falls behind, and the
difference is not negligible. We can observe that the slow start of the
TCP congestion mechanism affects the performance of the transmission
for small files independently of being tunneled with UDP. When ob-
serving the chart for transferring files of 1000 megabytes, the variations
are minimal and the bars for IPsec and Nebula share the same pattern.
However, as stated above, Nebula presents higher latency than IPsec.

5.4.3 Conclusion on performance

In summary, Nebula is comparable in speed to IPsec and plain TCP/IP for
files under 10 megabytes. When considering server-to-server communication
in which micro-services interact over HTTP or database transactions, the size
of the operation typically falls under 10 megabytes. Therefore, Nebula ade-
quately fits the use case of server-to-server communication in the cloud with-
out a substantial penalty in performance.

Chapter 6

Conclusion

In this thesis, we evaluate Nebula, a new secure overlay mesh network. In
particular, we compare its use for securing distributed applications to the tra-
ditional IPsec VPN solution. To carry out the assessment, we design a testbed
with virtual machines and conduct a number of experiments. We evaluate Neb-
ula in four key areas: reliability, security, manageability, and performance.

In terms of reliability, Nebula relies on the hole punching technique to es-
tablish connections. However, due to unpredictable NAT behaviors, the suc-
cess of hole punching is not guaranteed. As Nebula lacks alternative ways
of NAT traversal, it is unable to achieve host-to-host connectivity in specific
NATSs or NAT configurations. Thus, we discourage the use of Nebula unless
the network topology is well known and controlled, for instance in a data cen-
ter.

Concerning security, Nebula protects the channel with the Noise frame-
work IX handshake pattern and applies custom certificates for secure authen-
tication of nodes. The selected cryptographic algorithms are modern, fast, and
standardized by NIST.

Concerning manageability, Nebula brings simplicity and portability. The
loosely coupled design allows Nebula to scale-out seamlessly in cloud envi-
ronments. One of the most significant advantages of Nebula over IPsec is the
integration of the built-in firewall and the filtering by identity-based security
groups.

Regarding performance, Nebula has an overhead for being an overlay net-
work and for performing the cryptographic computations in the user-space as
opposed to the kernel-space computations in IPsec. On the other hand, per-
forming the computations in the user-space enables better portability.

In summary, Nebula brings ease of management with comparable security

66

CHAPTER 6. CONCLUSION 67

but slower performance than IPsec. The thesis provides grounded results and
insights for using Nebula, as well as building secure overlay networks in the
future.

6.1 Future work

With the implemented testbed in this thesis, we build a foundation for ex-
tending the evaluation to other overlay networks such as Tinc, Zerotier, and
Tailscale. We provide overlay network developers with an environment for
testing their experimental NAT traversal solutions.

The observations in this work open two possible areas for the future work.
First, the solution that Nebula provides can be enhanced and made more re-
liable by adding complete NAT traversal methods such as ICE. Second, the
experimental setup in this work can be used to evaluate other overlay network
solutions to determine if they are able to meet the requirements of this work.

Bibliography

[1]

(2]

[10]

Sasu Tarkoma. Overlay Networks: Toward Information Networking. CRC
Press, 2010. 1sBN: 9781439813737. urRL: https: //books.google.
fi/books?id=2p7MBQAAQRAJ.

Christian W. Dawson. Projects in Computing and Information Systems
2nd Edn: A Student’s Guide. 2nd. Pearson Education, 2009.

Ullrich Hustadt. Lecture: COMP516 Research Methods in Computer
Science.https://cgi.csc.liv.ac.uk/~ullrich/COMP516/
notes/lect10.pdf. 2009.

Bruno Marcel Duarte Coscia. Test bed for hole punching NATs. https :
//github.com/Ssruno/punching—-nat-test-bed. (Ac-
cessed on 11/15/2020).

Javvin Technologies Inc. Network protocols handbook. Saratoga, CA:
Javvin Technologies, 2005. 1sBN: 9780974094526.

Kjeld Borch Egevang and Pyda Srisuresh. Traditional IP Network Ad-
dress Translator (Traditional NAT). RFC 3022. Jan. 2001. por: 10 .
17487 /RFC3022. URL: https://rfc—editor.org/rfc/
rfc3022.txt.

Michelle Cotton et al. Special-Purpose IP Address Registries. RFC 6890.
Apr. 2013. por: 10 . 17487 / RFC6890. URL: https : / /rfc -
editor.org/rfc/rfc6890.txt.

Lixia Zhang. “A retrospective view of NAT”. In: IETF Journal 3.2
(2007), pp. 14-20.

Geoff Huston. “Anatomy: A look inside network address translators”.
In: The Internet Protocol Journal 7.3 (2004), pp. 2-32.

Dr. Steve E. Deering and Bob Hinden. Internet Protocol, Version 6
(IPv6) Specification. RFC 1883. Dec. 1995.po1: 10.17487 /RFC1883.
URL: https://rfc—-editor.org/rfc/rfcl1883.txt.

68

https://books.google.fi/books?id=2p7MBQAAQBAJ
https://books.google.fi/books?id=2p7MBQAAQBAJ
https://cgi.csc.liv.ac.uk/~ullrich/COMP516/notes/lect10.pdf
https://cgi.csc.liv.ac.uk/~ullrich/COMP516/notes/lect10.pdf
https://github.com/Ssruno/punching-nat-test-bed
https://github.com/Ssruno/punching-nat-test-bed
https://doi.org/10.17487/RFC3022
https://doi.org/10.17487/RFC3022
https://rfc-editor.org/rfc/rfc3022.txt
https://rfc-editor.org/rfc/rfc3022.txt
https://doi.org/10.17487/RFC6890
https://rfc-editor.org/rfc/rfc6890.txt
https://rfc-editor.org/rfc/rfc6890.txt
https://doi.org/10.17487/RFC1883
https://rfc-editor.org/rfc/rfc1883.txt

BIBLIOGRAPHY 69

Dr. Steve E. Deering and Bob Hinden. Internet Protocol, Version 6
(IPv6) Specification. RFC 8200. July 2017.po1: 10.17487/RFC8200.
URL: https://rfc-editor.org/rfc/rfc8200.txt.

Kjeld Borch Egevang and Paul Francis. The IP Network Address Trans-
lator (NAT). RFC 1631. May 1994. por: 10.17487/RFC1631. URL:
https://rfc-editor.org/rfc/rfcl631.txt.

James F Kurose and Keith W Ross. Computer Networking: A Top-Down
Approach. Pearson Higher Education, 2017.

Raimo Kantola. $38.3115 Signaling Protocols - Lecture Notes: Network
Addpress Translators and NAT traversal. http : / /www . netlab.
tkk.fi/u/kantola/Signaling/LNotes/3115-LNotes—
lell.doc.pdf.2015.

Cullen Jennings and Francois Audet. Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP. RFC 4787. Jan. 2007. por:
10.17487/RFC4787. URL: https://rfc-editor.org/
rfc/rfcd787.txt.

Bryan Ford et al. NAT Behavioral Requirements for TCP. RFC 5382.
Oct. 2008. por: 10 . 17487 /RFC5382. URL: https :/ /rfc -
editor.org/rfc/rfc5382.txt.

Saikat Guha et al. NAT Behavioral Requirements for ICMP. RFC 5508.
Apr. 2009. por: 10 . 17487 / RFC5508. URL: https : / / rfc -
editor.org/rfc/rfc5508.txt.

Simon Perreault et al. Common Requirements for Carrier-Grade NATs
(CGNs). RFC 6888. Apr. 2013. por: 10 . 17487 / REFC6888. URL:
https://rfc-editor.org/rfc/rfc6888.txt.

Reinaldo Penno et al. Updates to Network Address Translation (NAT)
Behavioral Requirements. RFC 7857. Apr. 2016. por: 10 . 17487/
RFC7857. URL: https://rfc—-editor.org/rfc/rfc7857.
txt.

Jonathan Rosenberg et al. STUN - Simple Traversal of User Datagram
Protocol (UDP) Through Network Address Translators (NATs). RFC
3489. Mar. 2003.por: 10.17487/RFC3489.URL: https://rfc—
editor.org/rfc/rfc3489.txt.

Philip Matthews et al. Session Traversal Utilities for NAT (STUN). REC
5389. Oct. 2008. por: 10.17487/RFC5389. URL: https://rfc—
editor.org/rfc/rfc5389.txt.

https://doi.org/10.17487/RFC8200
https://rfc-editor.org/rfc/rfc8200.txt
https://doi.org/10.17487/RFC1631
https://rfc-editor.org/rfc/rfc1631.txt
http://www.netlab.tkk.fi/u/kantola/Signaling/LNotes/3115-LNotes-le11.doc.pdf
http://www.netlab.tkk.fi/u/kantola/Signaling/LNotes/3115-LNotes-le11.doc.pdf
http://www.netlab.tkk.fi/u/kantola/Signaling/LNotes/3115-LNotes-le11.doc.pdf
https://doi.org/10.17487/RFC4787
https://rfc-editor.org/rfc/rfc4787.txt
https://rfc-editor.org/rfc/rfc4787.txt
https://doi.org/10.17487/RFC5382
https://rfc-editor.org/rfc/rfc5382.txt
https://rfc-editor.org/rfc/rfc5382.txt
https://doi.org/10.17487/RFC5508
https://rfc-editor.org/rfc/rfc5508.txt
https://rfc-editor.org/rfc/rfc5508.txt
https://doi.org/10.17487/RFC6888
https://rfc-editor.org/rfc/rfc6888.txt
https://doi.org/10.17487/RFC7857
https://doi.org/10.17487/RFC7857
https://rfc-editor.org/rfc/rfc7857.txt
https://rfc-editor.org/rfc/rfc7857.txt
https://doi.org/10.17487/RFC3489
https://rfc-editor.org/rfc/rfc3489.txt
https://rfc-editor.org/rfc/rfc3489.txt
https://doi.org/10.17487/RFC5389
https://rfc-editor.org/rfc/rfc5389.txt
https://rfc-editor.org/rfc/rfc5389.txt

70

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

BIBLIOGRAPHY

Bryan Ford, Dan Kegel, and Pyda Srisuresh. State of Peer-to-Peer (P2P)
Communication across Network Address Translators (NATs). REC 5128.
Mar. 2008. por: 10 . 17487 /RFC5128. URL: https : / /rfc -
editor.org/rfc/rfc5128.txt.

Bryan Ford, Pyda Srisuresh, and Dan Kegel. “Peer-to-Peer Communi-
cation Across Network Address Translators.” In: USENIX Annual Tech-
nical Conference, General Track. 2005, pp. 179-192.

Philip Matthews, Jonathan Rosenberg, and Rohan Mahy. Traversal Us-
ing Relays around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN). RFC 5766. Apr. 2010. por: 10 . 17487/
RFC5766. URL: https://rfc—-editor.org/rfc/rfch5766.
txt.

Ari Keridnen, Christer Holmberg, and Jonathan Rosenberg. Interactive
Connectivity Establishment (ICE): A Protocol for Network Address Trans-
lator (NAT) Traversal. RFC 8445. July 2018.po1: 10.17487 /RFC8445.
URL: https://rfc-editor.org/rfc/rfc8445.txt.

J. Dong. Network Dictionary. ITPro collection. Javvin Press, 2007. 1sBN:
9781602670006. URL: https://books .google. fi/books?
1d=0n%5C_Hh23IXDUC.

Jason A. Donenfeld. WireGuard: fast, modern, secure VPN tunnel. https:
//www.wireguard.com/. (Accessed on 28/07/2020).

Jason A Donenfeld. “WireGuard: Next Generation Kernel Network Tun-
nel.” In: NDSS. 2017.

Tailscale Inc. Tailscale. https://tailscale . com/. (Accessed
on 28/07/2020).

Tinc VPN. Tinc VPN.https://www.tinc-vpn.org/. (Accessed
on 28/07/2020).

ZeroTier Inc. ZeroTier — Global Area Networking. https: //www .
zerotier.com/. (Accessed on 28/07/2020).

Antonio Cilfone et al. “Wireless Mesh Networking: An IoT-Oriented

Perspective Survey on Relevant Technologies”. In: Future Internet 11.4
(2019), p. 99.

D. Allan et al. “Shortest path bridging: Efficient control of larger eth-
ernet networks”. In: IEEE Communications Magazine 48.10 (2010),
pp- 128-135. po1: 10.1109/MCOM.2010.5594687.

https://doi.org/10.17487/RFC5128
https://rfc-editor.org/rfc/rfc5128.txt
https://rfc-editor.org/rfc/rfc5128.txt
https://doi.org/10.17487/RFC5766
https://doi.org/10.17487/RFC5766
https://rfc-editor.org/rfc/rfc5766.txt
https://rfc-editor.org/rfc/rfc5766.txt
https://doi.org/10.17487/RFC8445
https://rfc-editor.org/rfc/rfc8445.txt
https://books.google.fi/books?id=On%5C_Hh23IXDUC
https://books.google.fi/books?id=On%5C_Hh23IXDUC
https://www.wireguard.com/
https://www.wireguard.com/
https://tailscale.com/
https://www.tinc-vpn.org/
https://www.zerotier.com/
https://www.zerotier.com/
https://doi.org/10.1109/MCOM.2010.5594687

[34]

[35]

[36]

[46]

BIBLIOGRAPHY 71

A. Khatri and V. Khatri. Mastering Service Mesh. Packt Publishing,
2020. 1sBN: 9781789615791. uRL: https://books.google.fi/
books?id=B%5C_PLxgEACAAJ.

William Morgan. What’s a service mesh? And why do I need one ? Buoy-
ant. https : / /buoyant . i0/2017 /04 /25 /whats—-a -
service-mesh—-and-why—-do—-1i-need-one. (Accessed on
28/05/2020). Apr. 2017.

Leonardo Leite et al. “A Survey of DevOps Concepts and Challenges”.
In: ACM Comput. Surv. 52.6 (Nov. 2019). 1ssn: 0360-0300. por: 10 .
1145/3359981.urL:https://doi.org/10.1145/3359981.

F5 Inc. What Is a Service Mesh? - NGINX. https://www.nginx.
com/blog/what-is—a—-service-mesh. (Accessed on28/07/2020).
Apr. 2018.

Linkerd Authors. Linkerd. https://linkerd.io/. (Accessed on
28/07/2020).

Sachin Manpathak. Kubernetes Service Mesh: A Comparison of Istio,
Linkerd and Consul. https://platform9.com/blog/kubernetes—
service—-mesh—-a-comparison—of—-istio—-linkerd-

and—-consul/. (Accessed on 28/07/2020). Oct. 2019.
Istio Authors. Istio. https://istio.io/.(Accessed on28/07/2020).

Envoy Project Authors. Envoy Proxy. https://www.envoyproxy .
io/. (Accessed on 28/07/2020).

HashiCorp. Consul. https://www.consul . io/. (Accessed on
28/07/2020).

Evan Gilman and Doug Barth. Zero Trust Networks: Building Secure
Systems in Untrusted Networks. 1st. O’Reilly Media, Inc., 2017. 1sBN:
1491962194.

Scott Rose et al. Zero Trust Architecture. Tech. rep. National Institute
of Standards and Technology, 2020.

S. Mehraj and M. T. Banday. “Establishing a Zero Trust Strategy in
Cloud Computing Environment”. In: 2020 International Conference
on Computer Communication and Informatics (ICCCI). 2020, pp. 1-
6.por: 10.1109/ICCCI48352.2020.9104214

K. Neupane and R. Haddad and L. Chen. “Next Generation Firewall for
Network Security: A Survey”. In: SoutheastCon 2018. 2018, pp. 1-6.
por: 10.1109/SECON.2018.8478973.

https://books.google.fi/books?id=B%5C_PLxgEACAAJ
https://books.google.fi/books?id=B%5C_PLxgEACAAJ
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://www.nginx.com/blog/what-is-a-service-mesh
https://www.nginx.com/blog/what-is-a-service-mesh
https://linkerd.io/
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://istio.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.consul.io/
https://doi.org/10.1109/ICCCI48352.2020.9104214
https://doi.org/10.1109/SECON.2018.8478973

72

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

BIBLIOGRAPHY

P. Papadimitratos and Z. J. Haas. “Securing the Internet routing infras-
tructure”. In: IEEE Communications Magazine 40.10 (2002), pp. 60—
68.po1: 10.1109/MCOM.2002.1039858.

Karen Seo and Stephen Kent. Security Architecture for the Internet Pro-
tocol. RFC 4301. Dec.2005.po1: 10.17487/RFC4301.URL: https:
//rfc—editor.org/rfc/rfcd4301.txt.

Tanenbaum, Andrew S. and Wetherall, David J. Computer Networks.
5th. USA: Prentice Hall Press, 2010. 1sBN: 0132126958.

R.E. Smith. Elementary Information Security. Jones & Bartlett Learn-
ing, 2013. 1sBN: 9780763761417. urRL: https://books.google.
fi/books?id=WrYRQiO0OBQODQC

Paul Wouters et al. Cryptographic Algorithm Implementation Require-
ments and Usage Guidance for Encapsulating Security Payload (ESP)
and Authentication Header (AH). RFC 8221. Oct.2017.po1: 10.17487/
RFC8221.URL: https://rfc-editor.org/rfc/rfc8221.
txt.

Charlie Kaufman et al. Internet Key Exchange Protocol Version 2 (IKEV2).
RFC 7296. Oct. 2014. por: 10 .17487 /RFC7296. URL: https :
//rfc—editor.org/rfc/rfc7296.txt.

Tuomas Aura, Michael Roe, and Anish Mohammed. “Experiences with
Host-to-Host IPsec”. In: Lecture Notes in Computer Science. Vol. 4631.
Springer-Verlag, Apr. 2005, pp. 3-22.po1: 10.1007/978-3-540~
77156 -2 _3. URL: https://www.microsoft .com/en-
us/research/publication/experiences—-with—-host-
to-host-ipsec/.

Ferguson, Niels and Schneier, Bruce. A cryptographic evaluation of
IPsec.https://www.schneier.com/wp—-content/uploads/
2016/02/paper-ipsec.pdf. 1999.

Tuomas Aura. CS-E4300 Network Security - Lecture: IPsec architec-
ture. https://mycourses.aalto.fi/course/view.php?
id=24349§ion=1.2019.

Dr. Bernard D. Aboba and William Dixon. IPsec-Network Address Trans-
lation (NAT) Compatibility Requirements. RFC 3715. Mar. 2004. por:
10.17487 /RFC3715. URL: https://rfc—-editor.org/
rfc/rfc3715.txt.

https://doi.org/10.1109/MCOM.2002.1039858
https://doi.org/10.17487/RFC4301
https://rfc-editor.org/rfc/rfc4301.txt
https://rfc-editor.org/rfc/rfc4301.txt
https://books.google.fi/books?id=WrYRQi0BQDQC
https://books.google.fi/books?id=WrYRQi0BQDQC
https://doi.org/10.17487/RFC8221
https://doi.org/10.17487/RFC8221
https://rfc-editor.org/rfc/rfc8221.txt
https://rfc-editor.org/rfc/rfc8221.txt
https://doi.org/10.17487/RFC7296
https://rfc-editor.org/rfc/rfc7296.txt
https://rfc-editor.org/rfc/rfc7296.txt
https://doi.org/10.1007/978-3-540-77156-2_3
https://doi.org/10.1007/978-3-540-77156-2_3
https://www.microsoft.com/en-us/research/publication/experiences-with-host-to-host-ipsec/
https://www.microsoft.com/en-us/research/publication/experiences-with-host-to-host-ipsec/
https://www.microsoft.com/en-us/research/publication/experiences-with-host-to-host-ipsec/
https://www.schneier.com/wp-content/uploads/2016/02/paper-ipsec.pdf
https://www.schneier.com/wp-content/uploads/2016/02/paper-ipsec.pdf
https://mycourses.aalto.fi/course/view.php?id=24349§ion=1
https://mycourses.aalto.fi/course/view.php?id=24349§ion=1
https://doi.org/10.17487/RFC3715
https://rfc-editor.org/rfc/rfc3715.txt
https://rfc-editor.org/rfc/rfc3715.txt

BIBLIOGRAPHY 73

[57] Tero Kivinen et al. Negotiation of NAT-Traversal in the IKE. RFC 3947.
Jan. 2005. por: 10 . 17487 / RFC3947. URL: https : / / rfc -
editor.org/rfc/rfc3947.txt.

[58] strongSwan. NAT Traversal (NAT-T). https://wiki.strongswan.
org/projects/strongswan/wiki /NatTraversal. (Ac-
cessed on 11/15/2020).

[59] Victor Volpe et al. UDP Encapsulation of 1Psec ESP Packets. RFC
3948. Jan. 2005. por: 10.17487/RFC3948. URL: https://rfc—
editor.org/rfc/rfc3948.txt.

[60] Ryan Huber. Introducing Nebula, the open source global overlay net-
work from Slack.
https://slack.engineering/introducing-nebula-
the-open—-source
—global-overlay—-network—from—-slack-884110a55709.
(Accessed on 28/07/2020). Nov. 2019.

[61] Jeff Stapleton and W Clay Epstein. Security without Obscurity: A Guide
to PKI Operations. CRC Press, 2016.

[62] Sharon Boeyen et al. Internet X.509 Public Key Infrastructure Certifi-
cate and Certificate Revocation List (CRL) Profile. RFC 5280. May
2008. po1: 10.17487/RFC5280. URL: https://rfc—-editor.
org/rfc/rfc5280.txt.

[63] slackhg/nebula. A scalable overlay networking tool with a focus on per-
formance, simplicity and security. https://github.com/slackhqg/
nebula. (Accessed on 11/15/2020).

[64] slackhg/nebula. Blocklist best practices. Issue #304. https://github.
com/slackhg/nebula/issues/304.(Accessedon 11/15/2020).

[65] slackhg/nebula. Documentation question: CAs. Issue #111. https :
//github.com/slackhg/nebula/issues/111. (Accessed
on 11/15/2020).

[66] Trevor Perrin. The Noise Protocol Framework, July 2018. Revision 34.
https://noiseprotocol.org/noise.pdf. July 2018.

[67] Benjamin Dowling, Paul Rosler, and Jorg Schwenk. “Flexible authen-
ticated and confidential channel establishment (fACCE): Analyzing the
Noise protocol framework™. In: IACR International Conference on Public-
Key Cryptography. Vol. 12100. LNCS. Springer. 2020, pp. 341-373.

https://doi.org/10.17487/RFC3947
https://rfc-editor.org/rfc/rfc3947.txt
https://rfc-editor.org/rfc/rfc3947.txt
https://wiki.strongswan.org/projects/strongswan/wiki/NatTraversal
https://wiki.strongswan.org/projects/strongswan/wiki/NatTraversal
https://doi.org/10.17487/RFC3948
https://rfc-editor.org/rfc/rfc3948.txt
https://rfc-editor.org/rfc/rfc3948.txt
https://slack.engineering/introducing-nebula-the-open-source
https://slack.engineering/introducing-nebula-the-open-source
-global-overlay-network-from-slack-884110a5579
https://doi.org/10.17487/RFC5280
https://rfc-editor.org/rfc/rfc5280.txt
https://rfc-editor.org/rfc/rfc5280.txt
https://github.com/slackhq/nebula
https://github.com/slackhq/nebula
https://github.com/slackhq/nebula/issues/304
https://github.com/slackhq/nebula/issues/304
https://github.com/slackhq/nebula/issues/111
https://github.com/slackhq/nebula/issues/111
https://noiseprotocol.org/noise.pdf

74 BIBLIOGRAPHY

[68] Andris Suter-Dorig. “Formalizing and verifying the security protocols
from the Noise framework”. Bachelor’s thesis. ETH Ziirich, 2018.

[69] Guillaume Girol. “Formalizing and verifying the security protocols from
the Noise framework”. MA thesis. ETH Ziirich, 2019.

[70] Marvin Schirrmacher. Analyzing WhatsApp Calls with Wireshark, radare?2
and Frida by Marvin Schirrmacher. Medium. https : / /medium.
com/@schirrmacher/analyzing-whatsapp-calls-176a%9e776213.
(Accessed on 12/07/2020). Feb. 2020.

[71] WhatsApp Inc. Whatsapp Encryption Overview - Technical white pa-
per. https://www.whatsapp.com/security/WhatsApp-—
Security-Whitepaper.pdf. Dec. 2017.

[72] P. Rosler, C. Mainka, and J. Schwenk. “More is Less: On the End-to-
End Security of Group Chats in Signal, WhatsApp, and Threema”. In:

2018 IEEE European Symposium on Security and Privacy (EuroS P).
2018, pp. 415-429.

[73] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Proto-
cols. RFC 8439. June 2018.po1: 10.17487/RFC8439. URL: https:
//rfc—editor.org/rfc/rfc8439.txt.

[74] Dr. Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Expand
Key Derivation Function (HKDF). RFC 5869. May 2010. por: 10 .
17487 /RFC5869. URL: https://rfc—-editor.org/rfc/
rfc5869.txt.

[75] Oracle. Oracle VM VirtualBox User Manual Version 6.1.6. https :
/ / download . virtualbox .org/virtualbox/6.1.6/
UserManual .pdf. 2020.

[76] Andreas Steffen. IKEV2 Cipher Suites - strongSwan. https://wiki.
strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites.
(Accessed on 18/07/2020). Mar. 2020.

[77] Tero Kivinen. Internet Key Exchange Version 2 (IKEv2) Parameters.
https://www.iana.org/assignments/ikev2-parameters/
ikev2-parameters.xhtml. (Accessed on 18/07/2020). July 2020.

[78] ESnet and Lawrence Berkeley National Laboratory. iPerf - The TCP,
UDP and SCTP network bandwidth measurement tool. https : / /
iperf.fr/. (Accessed on 26/07/2020).

https://medium.com/@schirrmacher/analyzing-whatsapp-calls-176a9e776213
https://medium.com/@schirrmacher/analyzing-whatsapp-calls-176a9e776213
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://doi.org/10.17487/RFC8439
https://rfc-editor.org/rfc/rfc8439.txt
https://rfc-editor.org/rfc/rfc8439.txt
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://rfc-editor.org/rfc/rfc5869.txt
https://rfc-editor.org/rfc/rfc5869.txt
https://download.virtualbox.org/virtualbox/6.1.6/UserManual.pdf
https://download.virtualbox.org/virtualbox/6.1.6/UserManual.pdf
https://download.virtualbox.org/virtualbox/6.1.6/UserManual.pdf
https://wiki.strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites
https://wiki.strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml
https://iperf.fr/
https://iperf.fr/

BIBLIOGRAPHY 75

Magnus Boye. “Netfilter connection tracking and NAT implementa-
tion”. In: Seminar on Network Protocols in Operating Systems. Aalto
University; Aalto-yliopisto, 2013.

J. Postel. Internet Control Message Protocol. RFC 792. Sept. 1981. por:
10.17487 /RFC0792. uRL: https://rfc—-editor.org/
rfc/rfc792.txt.

Nathan Brown. Feature Request: Support for RFC 8410 Ed25519 cer-
tificates and keys - Issue #51 - slackhg/nebula. https://github.
com/slackhg/nebula/issues/51. (Accessed on 28/07/2020).
Dec. 2019.

Daniel J Bernstein. “Curve25519: new Diffie-Hellman speed records”.
In: International Workshop on Public Key Cryptography. Vol. 3958.
LNCS. Springer. 2006, pp. 207-228.

NIST. Secure Hash Standard (SHS). Federal Information Processing
Standards Publication 180-1. 1995.

Morris J. Dworkin. SP 800-38D. Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC. Special
Publication. Gaithersburg, MD, USA: National Institute of Standards &
Technology, 2007.

Golang Standards Project. golang-standards/project-layout: Standard
Go Project Layout. https://github.com/golang-standards/
project-layout. (Accessed on 07/28/2020).

Amazon Elastic Compute Cloud. Amazon EC2 security groups for Linux

instances. https://docs.aws.amazon.com/AWSEC2/latest/

UserGuide / ec2 — security — groups . html. (Accessed on
11/15/2020).

Guest: Ryan Huber. Podcast LINUX Unplugged 329 by Jupiter Broad-
casting: Flat Network Truthers. https : / / linuxunplugged .
com/32972t=1936. Nov. 2019.

Tanenbaum, Andrew S and Bos, Herbert. Modern operating systems.
Pearson, 2015.

Jan Engelhardt. Packet flow in Netfilter and General Networking. https :
/ / commons .wikimedia.org/wiki/File:Netfilter—
packet-flow.svg. (Accessed on 25/07/2020). May 2019.

https://doi.org/10.17487/RFC0792
https://rfc-editor.org/rfc/rfc792.txt
https://rfc-editor.org/rfc/rfc792.txt
https://github.com/slackhq/nebula/issues/51
https://github.com/slackhq/nebula/issues/51
https://github.com/golang-standards/project-layout
https://github.com/golang-standards/project-layout
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://linuxunplugged.com/329?t=1936
https://linuxunplugged.com/329?t=1936
https://commons.wikimedia.org/wiki/File:Netfilter-packet-flow.svg
https://commons.wikimedia.org/wiki/File:Netfilter-packet-flow.svg
https://commons.wikimedia.org/wiki/File:Netfilter-packet-flow.svg

Appendix A

Processing tokens in Noise frame-
work

76

APPENDIX A. PROCESSING TOKENS IN NOISE FRAMEWORK

1 message_buffer < ''
2 FOR token IN message.tokens

3 IF token = 'e'

4 e < GENERATE_KEYPATR()

5 message_buffer ¢ message_buffer || e.public_key
6 h < HASH(h || e.public_key)

7 IF pattern_contains_psk

8 temp ¢ HMAC-HASH(ck, e.public_key)
9 ck < HMAC-HASH(temp, 0x01)

10 k < HMAC-HASH(temp, ck || 0x02)
11 n <0

12 ELSEIF token = 's'

13 s + load_static_keypair()

14 IF k = empty

15 enc_s - s.public_key

16 ELSE

17 enc_s ¢ ENCRYPT(k, n, h, s.public_key)
18 n4n+1

19 message_buffer < message_buffer || enc_s
20 h < HASH(h || enc_s)

21 ELSEIF token = 'psk'

22 psk ¢ load_corresponding_psk()

23 temp < HMAC-HASH(ck, psk)

24 ck <+ HMAC-HASH(temp, 0x01)

25 temp_h < HMAC-HASH(temp, ck || 0x02)
26 k < HMAC-HASH(temp, temp_h || 0x03)

27 n<«o0

28 h < HASH(h || temp_h)

29 ELSE

30 IF token = 'ee'

31 private_key ¢ e.private_key

32 public_key < re

33 ELSEIF token = 'ss'

34 private_key < s.private_key

35 public_key < rs

36 ELSEIF (token = 'es') = i_am_alice

37 private_key < e.private_key

38 public_key < rs

39 ELSE

40 private_key < s.private_key

41 public_key < re

42 dh_result < DH(private_key, public_key)
43 temp <— HMAC-HASH(ck, dh_result)

44 ck < HMAC-HASH(temp, 0x01)

45 k ¢ HMAC-HASH(temp, ck || 0x02)

46 n <0

47 1IF k = empty

48 ciphertext ¢« payload

49 ELSE

50 ciphertext < ENCRYPT(k, n, h, payload)

51 n<mn+1

52 message_buffer < message_buffer || ciphertext

53 h < HASH(h || ciphertext)
54 send(message_buffer)

Figure A.1: Initiator processing of tokens in the Noise framework [68]

77

78 APPENDIX A. PROCESSING TOKENS IN NOISE FRAMEWORK

1 message_buffer ¢« receive()
2 FOR token IN message.tokens
3 IF token = 'e'

4 (re, message_buffer) <

5 split_first_component (message_buffer)
6 h < HASH(h || re)

7 IF pattern_contains_psk

8 temp < HMAC-HASH(ck, re)

9 ck < HMAC-HASH(temp, 0x01)

10 k < HMAC-HASH(temp, ck || 0x02)
11 n <0

12 ELSEIF token = 's'

13 (enc_rs, message_buffer) <

14 split_first_component(message_buffer)
15 IF k = empty

16 Irs ¢ enc_rs

17 ELSE

18 rs < DECRYPT(k, n, h, enc_rs)
19 n<n+1

20 h < HASH(h || enc_rs)

21 ELSEIF token = 'psk'

22 psk ¢ load_corresponding_psk()

23 temp ¢ HMAC-HASH(ck, psk)

24 ck < HMAC-HASH(temp, 0x01)

25 temp_h < HMAC-HASH(temp, ck || 0x02)
26 k < HMAC-HASH(temp, temp_h || 0x03)
27 n <0

28 h < HASH(h || temp_h)

29 ELSE

30 IF token = 'ee'

31 private_key < e.private_key
32 public_key < re

33 ELSEIF token = 'ss'

34 private_key ¢ s.private_key
35 public_key < rs

36 ELSEIF (token = 'es') = i_am_alice
37 private_key < e.private_key
38 public_key ¢ rs

39 ELSE

40 private_key ¢ s.private_key
41 public_key < re

42 dh_result < DH(private_key, public_key)
43 temp < HMAC-HASH(ck, dh_result)

44 ck <+ HMAC-HASH(temp, 0x01)

45 k < HMAC-HASH(temp, ck || 0x02)

46 n <0

47 IF k = empty

48 payload ¢ message_buffer

49 ELSE

50 payload < DECRYPT(k, n, h, message_buffer)
51 n<n+1

52 h < HASH(h || message_buffer)

Figure A.2: Responder processing of tokens in the Noise framework [68]

Appendix B

Nebula configuration files

1 pki:
2 ca: /vagrant/files/ca.crt

cert: /vagrant/files/lighthousel.crt
4 key: /vagrant/files/lighthousel.key
s static_host_map:

6 "192.200.1.100": ["172.20.1.100:4242"]
7 lighthouse:

8 am_lighthouse: true

9 interval: 60

10 hosts:

11 remote_allow_list:
12 192.168.0.0/16: false
13 local_allow_1list:

14 interfaces:

15 ethO: false

16 10.40.40.0/24: false
7 listen:

18 host: 172.20.1.100
19 port: 4242

20 punchy:

21 punch: true

2 respond: true
23 delay: 1s

24 tun:

25 dev: nebulal

26 drop_local_broadcast: false
27 drop_multicast: false

28 tx_queue: 1000

29 mtu: 1500

30 routes:

31 unsafe_routes:

79

46

47

48

80 APPENDIX B. NEBULA CONFIGURATION FILES

logging:
level: debug
format: text
firewall:
conntrack:
tcp_timeout: 120h
udp_timeout: 3m

default_timeout: 10m

max_connections: 100000

outbound:

- port: any
proto: any
host: any

inbound:

- port: any
proto: any
host: any

Listing B.1: config.yml file fore ’lighthousel’

pki:

ca: /vagrant/files/ca.crt

cert: /vagrant/files/node-al.crt
key: /vagrant/files/node-al.key

static_host_map:

"192.200.1.100": ["172.20.1.100:4242"]

lighthouse:
am_lighthouse: false
interval: 60
hosts:
"192.200.1.100"
remote_allow_1list:

192.168.0.0/16: false

local_allow_1list:
interfaces:
eth0: false

10.40.40.0/24: false

listen:
host: 10.40.40.5
port: 5555

punchy:
punch: true
respond: true
delay: 1s

tun:
dev: nebulal
drop_local_broadcast:
drop_multicast: false

false

29

30

e]

APPENDIX B. NEBULA CONFIGURATION FILES

tx_queue: 1000
mtu: 1500
routes:
unsafe_routes:

logging:

level: debug
format: text

firewall:

conntrack:
tcp_timeout: 120h
udp_timeout: 3m
default_timeout: 10m
max_connections: 100000
outbound:
- port: any
proto: any
host: any
inbound:
- port: any
proto: any
host: any

Listing B.2: config.yml file fore 'node-al’

pki:

ca: /vagrant/files/ca.crt
cert: /vagrant/files/node-bl.crt
key: /vagrant/files/node-bl.key

static_host_map:

"192.200.1.100": ["172.20.1.100:4242"]

lighthouse:

am_lighthouse: false
interval: 60
hosts:
- "192.200.1.100"
remote_allow_list:
192.168.0.0/16: false
local_allow_1list:
interfaces:
eth0O: false
10.40.40.0/24: false

listen:

host: 10.40.40.7
port: 7777

punchy:

punch: true
respond: true
delay: 1s

81

82

APPENDIX B. NEBULA CONFIGURATION FILES

tun:

dev: nebulal
drop_local_broadcast: false
drop_multicast: false
tx_queue: 1000

mtu: 1500

routes:

unsafe_routes:

logging:

level: debug
format: text

firewall:

conntrack:
tcp_timeout: 120h
udp_timeout: 3m
default_timeout: 10m
max_connections: 100000
outbound:
- port: any
proto: any
host: any
inbound:
- port: any
proto: any
host: any

Listing B.3: config.yml file fore 'node-b1’

Appendix C

IPsec configuration files

I # Copy certificates

5

cp

3 Cp

4

5

6

8

cp

cp

#

/vagrant /config/pki/server —root —ca.pem
ipsec.d/cacerts/

/vagrant /config/pki/lighthousel —key.pem
ipsec.d/private/

/vagrant /config/pki/lighthousel —cert.pem
ipsec.d/certs/

/vagrant /config/pki/node-al-cert.pem
ipsec.d/certs/

sudo ufw allow 500,4500/udp

9 sudo iptables -t nat -A POSTROUTING -s

10.40.40.0/24 -0 ethl -m policy --dir out
ipsec —-j ACCEPT

10 sudo iptables -t nat —-A POSTROUTING -s

11

10.40.40.0/24 -o ethl -j MASQUERADE

n cat >/etc/ipsec.conf <<EOL

13
14
15

16

config setup

charondebug="all"
strictcrlpolicy=no
uniqueids=yes

17 conn lighthousel -to-node-al

type=tunnel

forceencaps=yes

auto=start

dpdaction=clear

keyexchange=ikev2

ike=aes256gcml28 -sha256-curve25519!
esp=aes256gcml28 -sha256 -curve25519!

83

/etc/

/etc/

/etc/

/etc/

-—-pol

S}

84 APPENDIX C. IPSEC CONFIGURATION FILES

left=172.20.1.100
leftid="C=FI, O=VPN lighthousel, CN
=172.20.1.100"

leftcert=/etc/ipsec.d/certs/lighthousel —cert.

pem
leftsubnet=0.0.0.0/0
right=%any

rightid="C=FI, O=VPN node-al, CN=10.40.40.5"

rightsourceip=10.40.40.5

rightcert=/etc/ipsec.d/certs/node—-al-cert.pem

EOL

cat >/etc/ipsec.secrets <<EOL

172.20.1.100 : RSA "/etc/ipsec.d/private/
lighthousel —key.pem"

EOL

Listing C.1: IPsec configuration in lighthousel

Copy certificates

cp /vagrant/config/pki/server —root-ca.pem
ipsec.d/cacerts/

cp /vagrant/config/pki/node-al-key.pem
ipsec.d/private/

cp /vagrant/config/pki/node-al-cert.pem
ipsec.d/certs/

cp /vagrant/config/pki/lighthousel —cert.pem
ipsec.d/certs/

cat >/etc/ipsec.conf <<EOL

config setup
charondebug="all"
strictcrlpolicy=no
unigqueids=yes

conn node-al-to-lighthousel
type=tunnel
forceencaps=yes
auto=start
dpdaction=clear
keyexchange=ikev2
ike=aes256gcml28 —sha256 —curve25519!
esp=aes256gcml28 -sha256 -curve25519!
right=172.20.1.100
rightid="C=FI, O=VPN lighthousel, CN

=172.20.1.100"

rightsubnet=172.20.1.0/24

/etc/

/etc/

/etc/

/etc/

APPENDIX C. IPSEC CONFIGURATION FILES 85

24 rightcert=/etc/ipsec.d/certs/lighthousel -cert.
pem

25 leftsourceip=%config

26 leftid="C=FI, O=VPN node-al, CN=10.40.40.5"

27 leftcert=/etc/ipsec.d/certs/node-al-cert.pem

28 EOL

3 cat >/etc/ipsec.secrets <<EOL

31 10.40.40.5 : RSA "/etc/ipsec.d/private/node-al-key.
pem"

32 EOL

Listing C.2: IPsec configuration in node-al

Appendix D

Packet flow in Netfilter

86

87

APPENDIX D. PACKET FLOW IN NETFILTER

@» Other NF parts
. Other Networking

SRsRmALI e
L network level
B bridge level

T ﬂ

XDP \
mm.un |vr.s ne\:vC .s.\:vfn.. =

_

Packet flow in Netfilter and General Networking

FORWARD PATH 7
] -n_ B
Application Layer ﬁ ~ =r It _
by Jan Engelbardt
clone packet [@Q@ﬁ.g_”_ E@q siisecel m-ﬂh:ﬂs:sﬁ.mﬂs%zs 7 R PET i

Netwerlk E@q

Figure D.1: Netfilter packet flow [89]

TRITA-EECS-EX-2020:912

	1 Introduction
	1.1 Description of the problem
	1.1.1 Geographically distributed services
	1.1.2 Multiple sites

	1.2 Research question
	1.3 Goal and objectives
	1.4 Methodology
	1.5 Ethics and sustainability
	1.6 Scope and delimitation
	1.7 Structure of the report

	2 Background
	2.1 Network Address Translation (NAT)
	2.1.1 Origin and motivation of NAT
	2.1.2 Guidelines for NAT design
	2.1.3 Types of NATs by mapping behavior
	2.1.4 Other classifications of NAT
	2.1.5 NAT Traversal
	2.1.6 STUN
	2.1.7 Hole punching
	2.1.8 TURN
	2.1.9 ICE

	2.2 Overlay networks
	2.2.1 Types of secure overlays
	2.2.2 Mesh networking
	2.2.3 Service mesh
	2.2.4 Types of service meshes
	2.2.5 Zero trust networking

	2.3 IPsec
	2.3.1 IPsec VPN
	2.3.2 Security associations
	2.3.3 SPD policies
	2.3.4 IKEv2
	2.3.5 Peer authorization database
	2.3.6 IPsec architecture
	2.3.7 IPsec and NAT traversal

	3 Nebula
	3.1 Motivation and goals
	3.2 Architecture and overview
	3.3 Certificates and CA
	3.4 Noise framework
	3.5 Handshake patterns
	3.6 Noise state machines
	3.6.1 Handshake state
	3.6.2 Symmetric state
	3.6.3 Cipher state

	3.7 Functions
	3.8 Overview of handshake pattern IX

	4 Experiment
	4.1 Experiment testbed setup
	4.1.1 Architecture
	4.1.2 Nebula setup
	4.1.3 IPsec setup
	4.1.4 Throughput experiment
	4.1.5 Latency experiment

	5 Evaluation results
	5.1 Reliability
	5.1.1 NAT traversal
	5.1.2 Case of failure
	5.1.3 Workarounds
	5.1.4 Conclusion on reliability

	5.2 Security
	5.2.1 Conclusions on security

	5.3 Manageability
	5.3.1 Conclusion on manageability

	5.4 Performance
	5.4.1 Throughput
	5.4.2 Latency
	5.4.3 Conclusion on performance

	6 Conclusion
	6.1 Future work

	Bibliography
	A Processing tokens in Noise framework
	B Nebula configuration files
	C IPsec configuration files
	D Packet flow in Netfilter

